Augmented Reality

دمج تكنولوجيا الواقع المعزز

في نموذج التعليم التحليدي لتصويب التصورات

البديلة المرتبطة بعلم الخلية لدى طلاب

الصف الأول الثانوي

إعداد

إيمان عبد الحسن محمد محمد عبد الوهاب

مدرسة المناهج وطرق تدريس العلوم البيولوجية والجيولوجية

كلية التربية – جامعة بنها
أUGmented Reality

المجلة الكليائية التربويتينا

عدد (127) يوليو (3) 2021

في نموذج Augmented Reality التعلم التونولوجي لتصويب التصورات البديلة المرتبطة بعلم الخليية لدى طالب الصف الأول الثانوي

مسيخل

هدف البحث الحالي التعرف على فاعلية دمج تكنولوجيا الواقع المعرز Augmented Reality في نموذج التعلم التونييدي لتصويب التصورات البديلة المرتبطة بعلم الخليية لدى طالب الصف الأول الثانوي، ولتحقيق ذلك تم تطبيق استبيان مقابلة على مجموعة من طلاب الصف الأول الثانوي لتحديد التصورات البديلة المرتبطة بالخليية "التركيب والوظيفة"، واعداد قائمة بالتصورات البديلة عن الخليية "التركيب والوظيفة"، كما تم اعداد أوراق عمل طالب ودليل المعلم في الباب الثاني الخليية "التركيب والوظيفة" وفقا للدمج تكنولوجيا الواقع المعرز Augmented Reality في نموذج التعلم التونييدي، واعداد اختبار التصورات البديلة في الباب الأول و公共服务 الخليية "التركيب والوظيفة" وتطبيقه قبليا على مجموعة البحث وعدها (23) طالب بالصف الأول الثانوي التي درست موضوعات الخليية "التركيب والوظيفة" وبعد الانتهاء من دراسة الموضوعات تم تطبيق اختيار التصورات البديلة بعيدًا، وتوصيل النتائج إلى ما يلي:
- النتائج الكمية: وجود فرق ذي دلالة إحصائية بين متوسطات درجات التطبيق القيلي والتطبيق البعيد لطلاب المجموعة التجريبية في كل من التصورات البديلة عن عضيات الخليية ووظائفها، التصورات البديلة عن الأنسجة النباتية ووظائفها، التصورات البديلة عن الأنسجة الحيوانية ووظائفها، مجموع مجالات التصورات البديلة المتضمنة في الخليية "التركيب والوظيفة" في اختبار التصورات البديلة عن الخليية لصالح التطبيق البعيد.
- النتائج الكيفية: من خلال تحليل استجابات الطلاب في اختبار التصورات البديلة عن الخليية "التركيب والوظيفة"، اتضح تصويب التصورات البديلة عن الخليية "التركيب والوظيفة" لدى مجموعة البحث.
- فاعلية دمج تكنولوجيا الواقع المعرز Augmented Reality في نموذج التعلم التونييدي لتصويب التصورات البديلة المرتبطة بعلم الخليية

الكلمات المفتاحية: الواقع المعرز - نموذج التعلم التونييدي - التصورات البديلة - الخليية.
Integrating augmented reality technology in the generative learning model to correct alternative perceptions related to cell Biology among first year secondary students

Abstract
This research aimed to identify the effectiveness of integrating Augmented Reality technology into the generative learning model to correct alternative perceptions related to cell science among first-year secondary students. And a list of alternative perceptions of the cell "Structure and Function" was prepared, and student worksheets and teacher's manual were prepared in the second chapter of the cell "Structure and Function" in the light of the integration of augmented reality technology into the generative learning model, and the test of alternative perceptions in the cell "Structure and Function" was prepared. Pre and Post test was applied on The research group numbered (33) students in the first year of secondary school, which Learned the topics of the cell “Structure and Function.”. the results showed that:
- Quantity results: there is a statistically significant difference between the mean scores of the pre and post application for the students of the experimental group in each of (alternative perceptions about cell organelles and their functions, alternative perceptions about plant tissues and their functions, alternative perceptions about animal tissues and their functions, total areas of alternative perceptions included in The cell "Structure and Function") in testing alternative conceptions of the cell in favor of the dimensional application
- Qualitative results: By analyzing the students' responses to the test of alternative perceptions of the cell "Structure and Function", it became clear that the research group's treatment of alternative perceptions of the cell "Structure and Function"
- The effectiveness of integrating Augmented Reality technology into the generative learning model to correct alternative scenarios related to cell Biology.

Keywords: Augmented Reality - alternative perceptions – generative learning model - cell Biology
المقدمة والإحساس بالمشكلة

يعتبر علم الخلية أحد فروع العلوم البيولوجية التي تختص بدراسة الخلية من جميع جوانبها التركيبية والوظيفية، وتعتبر الخلية مفهومًا رئيسًا، وتتمثل المعرفة الدقيقة بها ضرورة لفهم العديد من الظواهر والعمليات البيولوجية، فضلاً عن الأداء العام للكائنات الحية .(Fernández and Tejada , 2018 , 1)

كما تعتبر بيولوجيا الخلية من أهم الموضوعات التي يتم تناولها على نطاق واسع لتعزيز علم الأحياء الحديث (Suwono, et al., 2021, 1)، حيث توفر المعرفة بيولوجيا الخلية فيها لعمليات الحياة الديناميكية، بدءًا من المستوى الخلوي كوحدة أساسية للحياة إلى مستوى الكائنات الحية وحتى المجتمعات والتنظم البيئي والمفاهيم الأساسية لبيولوجيا الخلية ضرورية للثقافة العلمية (1, 2014)

ويشير مصطلح التصورات الخاطئة إلى أفكار الطلاب التي تختلف عن تلك الأفكار المقبول عمومًا من قبل العلماء (Odom, 1995,409، ويعبر المفهوم الخاطئ بشكل عام على أنه اعتقاد خاطئ يتم إنشاؤه عادةً أثناء فهم الأفكار أو الأشياء أو الظواهر (353, 2006).

كما يشير ديكمنلي (Dikmenli, 2010) إلى أنه قد تم صياغة مصطلح "المفاهيم الخاطئة" لوصف المفاهيم البديلة أو النظريات السلبية/ السائدة أو وجهات النظر التي لا تتوافق مع المفاهيم المقبولة من قبل مجتمع العلماء، وغالبًا ما تتمثل التصورات الخاطئة لدى الطلاب عوائق عميقة الجذور ومقاومة للتعليم ولاكتساب المفاهيم العلمية وتبقى هذه التصورات الخاطئة لدى الطلاب حتى بعد إنهاء عملية التدريس، كما يشير كل من شارما وكابور (Sharma and Kaur , 2016, 1463) إلى أن التصورات الخاطئة قد تحدث بسبب الطريقة التي يتبناها المعلمون أثناء التدريس أو بسبب عبء المنهج الدراسي الذي قد يضطررون إلى الانتهاء منه حتى نهاية الدراسة دون إجراء أي جهد.

وتكون خطورة التصورات الخاطئة الشائعة بين الطلاب في كونها تؤثر سلبًا على تعلمهم للمعرفة العلمية الصحيحة، فهي تعيق الفهم الصحيح لديهم، ومن ثم ينخفض تصيلهم الدراسي في المواد الدراسية المختلفة (زيتون, 2003, 2004، ونظرًا لأن التصورات الخاطئة السابقة لدى الطلاب تؤثر على اكتسابهم معلومات جديدة لذلك أصبحت التصورات
المجلة التشريمية التربوياتينها

العدد (٢٣٧) يوليو(٣) ٢٠٢١

الخاطئة لدى الطلاب مسألة مهمة يجب مناقشتها والعمل على تعديلها وتغييرها بالتصورات العلمية الصحيحة.

ورى كل من ديودا وأدبريادى (Duda and Adpriyadi, 2020, 47) أن علم الخلية من الموضوعات المجردة التي يصعب على الطلاب فهما لأن المفاهيم التي يتعلمونها لا يمكن رؤيتها مباشرة لذلك يصعب عليهم تذكرها، كما أنه يعتبر من الموضوعات التي يكثر بها التصورات الخاطئة لدى الطلاب.

والواقع المعزز هو نوع مختلف من البيئات الاشتراكية أو الواقع الاشتراكي، حيث يُسمح للمتعلم بروية العالم الحقيقي باستخدام الواقع الاشتراكي، فتكون الأشياء / الأجسام الاشتراكية مركبة على العالم الحقيقي. لذلك، فإن الواقع المعزز يكلل الواقع الحقيقي، وقد يبدو للمتعلم أن الأشياء الاشتراكية والخفية تعيش في نفس المساحة، (Azuma, 1997, 356).

ويسمح الواقع المعزز بإضافة المحتوى الرقمي (مثل ملفات الصوت والفيديو والمعلومات النصية والأشكال ثنائية وثلاثية الأبعاد) للواقع الحقيقي مما يساعد المتعلمين على تعزيز معرفتهم وفهمهم لما يجري حولهم ولما يتم دراسته (Yuen, Yaoyuneyong, and Johnson, 2011, 119).

وإلى ذلك، استنادا إلى الدراسة الترغيبية التي أجراها كل من بالوج وبربيبانو، وأورداش، حول تنفيذ نظام التعليم بالواقع المعزز في المدارس، فإنها تشير بقوة إلى أن نظام التعليم بالواقع المعزز يُظهر قيمة تعليمية تجعل بيئة التعلم أكثر جاذبية وتحفزا وإثارة للطلاب، حيث يستمتع الطلاب بطريقة التعلم التفاعلي التي تستهدف جميع حواس الطلاب (المرئية والسمعية واللمسية)، ويشعرون وكأنهم يلعبون بألعاب الكمبيوتر عند القيام بالأنشطة القائمة على تطبيقات الواقع المعزز.

كما يعتبر الواقع المعزز من التكنولوجيات الفعالة في تدريس علم الأحياء حيث يمكن استخدامه في تدريس العديد من الموضوعات مثل بيئة الخلايا والكائنات الحية الدقيقة والوظائف والعمليات البيولوجية وما إلى ذلك، كما أنه يساهم في دعم أهداف التعلم من خلال تطبيق محتوى التعلم الظاهري، واكتساب الخبرة المباشرة من خلال التفاعل الحي ورؤية الصور ثلاثية الأبعاد للهيئات المجهرية التي لا يمكننا رؤيتها بالعين المجردة، (Phuong, Thuy, Thuy و Ngoc, 2021, 88).
ويمكن استخدام الواقع المعزز لنموذج موضوعات الأحياء، حيث أنه يدرب الطلاب للقيام بالتعلم المستقل لأن هناك العديد من التفاعلات بين الطلاب والموضوع الذي يتم دراسته، كما أنه يساعد الطلاب على تصور الأشياء ثلاثية الأبعاد مما يسهل عليهم إجراء ملاحظات حول تلك الأشياء وفهمها (Susilo, Hardyanto, Martuti, and Purwinarko, 2021).

ويؤكد كل من وينج وي وي ويو وEHICLEIA (Weng; Bee; Yew and Hsia, 2016, 9, c19455/c19461/c19462) على ضرورة استخدام تطبيقات الواقع المعزز في تدريس موضوعات الأحياء بالمرحلة الثانوية لظهور فاعلية التكنولوجيا في عملية التدريس والتعلم، كما يساعد الواقع المعزز في تقديم صورة ملموسة للمفاهيم والمصطلحات المجردة وإدراك الظواهر والأشياء والأجسام التي يصعب نمذجتها وإدراكها بشكل مباشر.

كما يشير أصحاب النظرية البنائية إلى ضرورة استخدام وسائل وأساليب التكنولوجيا الحديثة في عملية التعليم لما تلعبه التكنولوجيا من دور كبير في مساعدة المعلم والمتعلم، وتأثيرها الفعال في تنمية العديد من جوانب التعلم (زيتون، وزيتون، 2003، 169-179)، وتساعد النماذج القائمة على النظرية البنائية على تعديل التصورات البديلة لدى المتعلمين (زيتون، 2007، 42-34).

وقد أشارت الدراسات السابقة إلى وجود العديد من التصورات البديلة المرتبطة بالخلايا مثل الانقسام البينوي والانقسام الميتزولي، وخلط الطلاب بين مراحل عملية انقسام الخلايا والعمليات التي تحدث بكل مرحلة من هذه المراحل التي تم تحديدها كما في دراسة ديكمنلي (Dikmenli, 2010)، وتصويرات خاطئة عن حجم الخلية، بنيتها، ووظائف الخلايا، المكونات الأساسية للخلايا، نقل المواد عبر غشاء الخلية، وانقسام الخلية كما في دراسة فيرناندز وتيجادا (Fernández and Tejada, 2018)، ودراسة سونو وأخرون (Suwono, et al., 2021)، وبعض المفاهيم مثل غشاء البلازما، و جهاز جولجي، والشبكة الاندوبلازمية، والريبوسومات كما في دراسة ديدو وأديرايدي (Duda & Adipriyadi, 2020).

والتكد من وجود تصورات بديلة في علم الخلية تم إجراء مقابلات شخصية مع مجموعة من طلاب الصف الأول الثاني وعدها (55) طالب وطالبة، وقد تضمنت المقابلة تطبيق
استبيان: "بة بعض الأسئلة المقابلة المتعلقة بـ "الخليفة": التركيب والوظيفة" من كتاب الأحياء لـ الصف الأول الثانوي عام، وطلب من الطلاب بعد دراستهم الإجابة على هذه الأسئلة تحريرًا لمعرفة التصورات البديلة المرتبطة بعلم الخليفة الموجودة لدى الطلاب، وتبين من خلال اجابة الطلاب وجود بعض التصورات البديلة مثل (الخلط بين الجدار الخلوي والغشاء البلازمي، الخلط بين وظيفة الغشاء البلازمي ووظيفة جدار الخلية، الخلط بين النواة والوية، الكرومدين والكروماتيد، وظيفة الريبوسومات، وظيفة الشبكة الإندولازمية الخشنة، وظيفة جسم جولجي، مكان وجود البلاستيدات الخضراء في النباتات، تعريف النسيج الوراثي ووظيفته، الخلط بين وصف النسيج الكولنشييمي ووظيفته ونظام الإسکاراکککککککیکی، الخلط بين تركيب ووظيفة نسيج الخشب واللحا، الخلط بين الأنسجة الضامة والأنشطة العضالية).

لذلك بحث البحث الحالي الكشف عن التصورات البديلة المرتبطة بعلم الخليفة في الباب الثاني (الخليفة: التركيب والوظيفة) لدى طلاب الصف الأول الثانوي باستخدام أحد التقنيات التكنولوجية الحديثة وهي تكنولوجيا الواقع المعزز (Augmented Reality (AR)) ونماذج النظرية البائيانية وهو النموذج التوليدي.

مشكلة البحث:
تتعد في وجود بعض التصورات البديلة المرتبطة بعلم الخليفة في الباب الثاني (الخليفة: التركيب والوظيفة) لدى طلاب الصف الأول الثانوي.

نماذج البحث:

1. ما التصورات البديلة المرتبطة بعلم الخليفة لدى طلاب الصف الأول الثانوي؟
2. ما التصميم التعليمي للوقائع المعزز الذي يوظف في سياق نموذج التعلم التوليدي؟
3. ما فاعلية دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي لتصوير التصورات البديلة المرتبطة بعلم الخليفة لدى طلاب الصف الأول الثانوي؟

أهداف البحث:

يهدف البحث إلى:
- الكشف عن التصورات البديلة المرتبطة بعلم الخليفة في الباب الثاني (الخليفة: التركيب والوظيفة) لدى طلاب الصف الأول الثانوي.
- تحديد فاعلية دمج تكنولوجيا الواقع المعزز في النموذج التوليدي لتصوير التصورات البديلة المرتبطة بعلم الخليفة لدى طلاب الصف الأول الثانوي.

ملحق (1) استبيان مقابلة للكشف المبني عن بعض التصورات البديلة حول علم الخليفة

240
أهمية البحث:
من المتوقع أن يفيد البحث الفئات التالية:
- اعداد دليل لمعلم الأحياء قد يستفيد منه في تحسين الأداء التدريسي وعلاج التصوارات
البديلة المرتبطة بعلم الخلية لدى الطلاب.
- اعداد قائمة بالتصوارات البديلة المرتبطة بعلم الخلية، يمكن أن يفيد مخطوطات المناهج
عند بناء المناهج، والتأكد على سبيل تكوين التصوارات الصحيحة لدى الطلاب.
- بناء اختيار التصوارات البديلة قد يساعد في بناء اختيارات متماثلة في دراسات أخرى.

حدود البحث:
الحصر البحث على:
- مجموعة من طلاب الصف الأول الثانوى وعددهم (32) بمدرسة (أم المؤمنين الثانوية
بنات) بإدارة (بنها).
- التصوارات البديلة عن (الخلية: التركيب والوظيفة) من كتاب الأحياء للعام الدراسي
2021 / 2022 م.

فرض البحث:
- توجد تصوارات بديلة مرتبطة بعلم الخلية لدى طلاب الصف الأول الثانوى.
- يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القبلي والتطبيق البعدي
لطلاب المجموعة التجريبية في التصوارات البديلة عن عضويات الخلية في اختبار
التصوارات البديلة عن الخلية لصالح التطبيق البعدي.
- يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القبلي والتطبيق البعدي
لطلاب المجموعة التجريبية في التصوارات البديلة عن الأنسجة النباتية في اختبار
التصوارات البديلة عن الخلية لصالح التطبيق البعدي.
- يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القبلي والتطبيق البعدي
لطلاب المجموعة التجريبية في التصوارات البديلة عن الأنسجة الحيوانية في اختبار
التصوارات البديلة عن الخلية لصالح التطبيق البعدي.
- يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القبلي والتطبيق البعدي
لطلاب المجموعة التجريبية في مجموع مجالات التصوارات البديلة في اختيار
التصوارات البديلة عن الخلية لصالح التطبيق البعدي.
مصطلحات البحث

تتدد مصطلحات البحث كالتالي:
- التصورات البديلة

تعني إجراءات بأنها: المعارف والمعلومات والمفاهيم الخاطئة المرتبطة بعلم الخليه
"التركيب والوظيفة" لدى طلاب الصف الأول الثانوي والتي تتعارض مع التصورات المقولة
التي يُعذرها العلماء والمتخصصين، وتقاس باختيار التصورات البديلة وتتدد من خلال تحليل
استجابات الطلاب في اختبار التصورات البديلة المستخدم في البحث الحالي.

- الواقع المعزز

يعني بأنه: تقنية تعتمد على تعزيز الواقع الحقيقي (محتوى كتاب الأمية) بمحتوى
رقم يتمثل في الصور ثلاثية الأبعاد ومقطع الفيديو والرسوم المتحركة بما يساعد طلاب
الصف الأول الثانوى على تعلم تصوراتهم البديلة عن الخليه "التركيب والوظيفة".
- النموذج التوثيدي

يعني إجرايات بأنه: أحد النماذج التدريسية القائمة على النظريه البنائية والمكون من
أربع مراحل وهي: المرحلة التمهيدية ومرحلة التركيز ومرحلة التحدي ومرحلة التطبيق
وسيتم دمج تقنيه الواقع المعزز في كل مرحلة من المراحل لعلاج التصورات البديلة عن
الخليه "التركيب والوظيفة".

الإطار النظري للبحث

أولا: التصورات البديلة في علم الأمية

تعد التصورات البديلة من الأشياء المهمة التي ينبغي التغلب عليها بسبب إعاقتها
للطلاب من استيعاب المعرفة الجديدة، ويجب القيام باكتشاف التصورات الخاطئة في وقت
(Sartika, Susilo and Sulisetijono, 2021, 6)

ويعد الكشف عن المفاهيم والتصورات الخاطئة في علم الأمية عامل رئيس يؤثر
على فهم الطلاب للعلوم على مستوى المرحلة الثانوية، حيث أن وجود العديد من التصورات
الخاطئة التي لم يتم معالجتها لدى الطلاب قد تنتقل إلى المرحلة الجامعية
(Simmie and O’Grady, 2015, 2)
وغالبًا ما تنشأ التصورات الخاطئة لدى الطلاب من مشاكل التواصل مع معلمي العلوم المختلفين، تفاعلات مجموعة الأفراد في حجزة الدراسة ووسائل التواصل الاجتماعي، وفي أماكن أخرى. وغالبًا ما يكون السبب أيضًا هو الاستخدام غير النقي "الأمثل" للكتب المدرسية.

وتتمثل التصورات الخاطئة إلى مقاومة التغيير، ويوضع المعلمون في موقف صعب لإحداث تغيير مفاهيمي مهم ومطلوب لدى الطلاب، ومنذ أن أثبتت أشكال التدريس العادية عدم نجاحها في التغلب على التصورات الخاطئة لدى الطلاب، فتظل التصورات الخاطئة مشكلة يجب حلها (Reshmi, 2018).

وتُعرف التصورات البديلة بأنها نوع من المعرفة الساذجة أو المعرفة البدنية أو المعرفة التلقائية التي يكتسبها الفرد من خلال تفاعله مع البيئة، أو مع الغير من الناس. وهذه المعرفة لا تتوافق مع النظرية العلمية الصحيحة (أي مع ما توصلت إليه المعرفة العلمية في الوقت الراهن) (زيتون، 2003).

كما تُعرف أيضًا بأنها فكرة أو أفكار تتعارض بشكل واضح مع المعلومات العلمية. وبالتالي فهو غير ملائم وغير مقبول (Kose, Pekel and Hasenekoglu, 2009).

وتتكون التصورات البديلة في العديد من موضوعات علم الأحياء إن لم يكن معظمها بسبب طبيعتها التي تتضمن الكثير من المفاهيم والمعلومات المجردة وغير المحسوسه والمدينة بالنسبة للطلاب، ومن الموضوعات التي يوجد بها تصورات بديلة لدى الطلاب: الإنقسام الخلوي (Dikmenli, 2010)، تركيب النباتات والتكتار في النباتات (أمي، 2012)، العمليات الحيوية في الكائنات الحية (أمي، 2014)، البذور الضوئي وعملية التنفس (Kose, Pekel and Galvin, Simmie, and O’Grady, 2015).

(Sharma & Kaur, 2016)، مفاهيم بيوغيا الخلوية (Hasenekoglu, 2009)، الدوجما الرئيسية للبيولوجيا الجزيئية للفماهم الشفيرة الوراثية وتخليق البروتينين (Novitasari, Ramli and Karyanto, 2018)، خصائص البكتيريا وتركيبها ووظائفها (Sulisetijono, 2021)

التصورات البديلة في علم الخلية والأنسجة
تعد المعرفة الأساسية بتركيب الخلية ووظائفها أمرًا حيويًا، حيث تلعب دورًا مركزيًا في فهم الطلاب البنية والوظيفة في الكائنات الحية، وفيم مختلف جوانب الحياة بدءًا من الصحة والتغذية إلى آليات التطور والتنوع البيولوجي، (2021).

كما أن الكشف عن التصورات البديلة لدى الطلاب هو الخصوة الأهم والأولى لمنع حدوث الفهم الخاطئ في تعلم الأحياء، حيث يجب تحديد فهم الطلاب للتصورات البديلة لديهم بشكل دوري ومستمر حتى يمكن معرفة سبب حدوث التصورات البديلة، والعمل على تصورها، وأشارت نتائج الدراسات السابقة إلى وجود تصورات بديلة لدى الطلاب أثناء تعلم موضوع الخليا (Suwono, et al., 2021; Duda & Adpriyadi, 2020; and Tejada, 2018).

كما يعتبر موضوع الأنسجة النباتية والحيوانية موضوعًا مهمًا يجب فهمه لأنه إلى جانب التفاعل معه، فإنه يصبح الأساس لتطبيق التكنولوجيا في علم الأحياء الحديث مثل الخلايا الجذعية ووزارة الأنسجة النباتية (Sartika, Susilo and Sulisetijono, 2021).

ويعتمد كل من تامبو وموكورو ومahasorو (2003, 122) على أن الطلاب الذين لديهم تصورات خاطئة حول بنية الخلية ووظائفها من المحتمل أن تؤثر على فهمهم للمفاهيم والأفكار الأخرى المرتبطة بمادة الأحياء إذا تركت دون معالجة.

ومن الدراسات السابقة التي اهتمت بتباول التصورات البديلة في علم الأحياء: دراسة ديكمنلي (Dikmenli, 2010) والتي أجريت بهدف تحديد التصورات الخاطئة المرتبطة بدراسة الانقسام الخلوي لدى الطلاب المعلمين بشعبة الأحياء باستخدام الرسومات والمقابلات الشخصية، وقد تم جمع البيانات من (14) طالب معلم بكلية التربية بجامعة بتركيا وتوصلت الدراسة إلى أن الطلاب المعلمين لديهم سلسلة من التصورات الخاطئة فيما يتعلق بالانقسام الخلوي، حيث ارتبطت بالانقسام الميوزي (انقسام الخلايا التناسلية) أكثر من الانقسام المتبتؤي (انقسام الخلايا الجنسية) حيث وجود تداخل بين مراحل عملية انقسام الخلايا والعمليات التي تحدث بكل مرحلة من هذه المراحل، وقد تم تحديد (24) تصور خاطئ من خلال تحليل رسومات الطلاب المعلمين، كما تم تحديد (17) تصور خاطئ.
من خلال المقابلات مع (15) طالب تم اختيارهم عشوائياً، ووجد أن غالبية التصورات الخاطئة التي تم الحصول عليها من المقابلات متشابهة مع التصورات الخاطئة المكتشفة من خلال الرسومات، مما توصلت الدراسة إلى أن الرسومات طريقة فعالة للتحقق من بعض جوانب صعوبات التعلم لدى الطلاب وتحديد التصورات البيولوجية الخاطئة لديهم.

ودراسة السيد (2013) أجريت بهدف استخدام استراتيجيات الخرائط الذهنية غير الهرمية في تصويب التصورات البديلة لبعض المفاهيم العلمية وتتمة التحصيل وبناء اثر التعلم في مادة الأحياء لدى طلاب المرحلة الثانوية بالسعودية، وتحقيق ذلك تم اختيار حدتين وهم (تركيب النبات وكشف أجزاء، والتكاثر في النباتات) من كتب الأحياء المقرر في طلاب الصف الثاني، تم إعداد دليل تعلم في ضوء استراتيجيات الخرائط الذهنية غير الهرمية واعداد اختبار التصورات البديلة للمفاهيم العلمية ثاني الشق وتحديد التصورات البديلة لبعض المفاهيم العلمية وتمة التحصيل وبناء اثر التعلم.

ودراسة أمبوسغدي والبلوشي (2014) التي استهدفت الكشف عن التصورات البديلة لدى طلاب التعليم العام ببلتنة عمان في بعض مفاهيم علم الأحياء، وتمثلت أداة الدراسة في اختبار التصورات البديلة من نوع الاختيار من متعدد تم تطبيقه على عينة مكونة من (103) طالب وطلابية بالصف الثاني عشر بمحافظات الداخلية وشمال الشرقية وجنوب الباطنة وشمال الباطنة ببلتنة عمان، وأشارت نتائج الدراسة إلى انتشار العديد من التصورات البديلة لدى الطلاب في مفاهيم علم الأحياء في مجالات (الأجهزة والعمليات الحيوية في الكائنات الحية، التكاثر والوراثة، الخلية، ومناشطها، والتغذية والتكيف).

ودراسة شارما وكابور (2016) استهدفت تحديد التصورات الخاطئة الشائعة لدى طلاب المرحلة الثانوية في مفاهيم بيولوجيا الخلية في الموضوعات الفرعية (نظرية الخلية "الأنواع المختلفة من الخلايا، التركيب والحجم، الخلية النباتية والخلية الحيوانية" - تنظيم الخلايا " عضيات الخلية المختلفة، انقسام والانقسام الاختزالي -"
النقل في الخلايا "الإشارةية والانتشار"، تم تطبيق اختيار تشخيصي على (11) طالب بعد الانتهاء من دراسة الموضوعات وتوصيلت النتائج إلى وجود تصورات خاطئة لدى الطلاب عددًا (14) تصور خاطئ تم تقسيمها إلى ثلاثة مجالات وهي النظرية الخلية، عضيات الخلية، و النقل في الخلية، وتمتحديد النسب المئوية لوجودها كل على حدٍ، كما أشارت النتائج إلى أنه غالبًا ما يتم الخلط بين الطلاب في عضيات الخلية المختلفة ودور الانقسام والانقسام الاحترالي في انقسام الخلايا، كما ل يمكن معظم الطلاب قادرين على التمييز بين الجينات والكروموسومات والحمض النووي ومن ثم يجب على المعلمين مراجعة هذه التصورات الخاطئة لدى الطلاب باستخدام استراتيجيات التدريس المناسبة.

ودراسة "عفيفي (2016)" هدفت إلى تقديم استراتيجية (DARE) الجديدة القائمة على الرسم واستخدام النماذج البصرية، وتحديد فاعلتها في تصوير التصورات الخاطئة المرتبطة بالدوجما الرئيسية للبيولوجيا الجزيئية لمعاهم الشفرة الوراثية وتحليل البروتين وتنمية مهارات التفكير البصري لدى طلاب الصف الثالث الثانوي، وقد تم ذلك من خلال إجراء دراسة تشخيصية لتحديد التصورات الخاطئة لدى الطلاب وتم التوصل من خلالها إلى وجود تصور خاطئ لدى الطلاب ثم أجريت الدراسة التجريبية باستخدام الاستراتيجية المقترحة لتدريس موضوعات وحدة "الوراثة الجزيئية" وتمكنت مجموعتي البحث من المجموعة التجريبية وعدها (3) طالب والمجموعة الضابطة وعدها (3)، وقد أظهرت نتائج الدراسة فاعلية الاستراتيجية المقترحة في تصوير التصورات الخاطئة وتنمية مهارات التفكير البصري لدى الطلاب.

ودراسة "بيرنانديز وتيجادا (2018)"، هدفت إلى تحديد الصعوبات المرتبطة برناية علم الخلايا لدى طلاب المدارس الثانوية وتحديد أراء طلاب البكالوريوس والماجستير تخصص علم بيولوجيا وجيولوجية ومشاهد في تدريس معلمي التعليم الثانوي في الصعوبات التي تواجه طلابهم بالمرحلة الثانوية بعد دراسة موضوع الخلية، وتجربة ذلك تم تطبيق استبان على مجموعتي الدراسة، المجموعة الأولى التي تكمنت من (13) طالب من الطلاب الحاصلين على درجة الماجستير والبكالوريوس، وتضمن الاستبان السؤال واحد مفتوح وهو "ما أنواع الصعوبات التي تعتقد أن الطلاب سيواجهونها عندما يدرسون الخلايا؟،" وتم تقسيم إجابات الطلاب عن هذا السؤال في خمس فئات: الفئة...
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
دراسة سونو وآخرون (2021) استهدفت تقديم اختبار تشخيصي حول التصورات الخاطئة المرتبطة بعلم الخلية لدى معلمي الأحياء قبل الخدمة، وتكون الاختبار من (30) مفردة اختبار من متعدد، كل مفردة مكونة من ثلاثة أجزاء، الجزء الأول هو السؤال والجزء الثاني سبب اختيار الإجابة على السؤال والجزء الثالث هو يفن الإجابة (متأكد - غير متأكد)، ثم تطبيق الاختبار على (40) معلم من معلمي قبل الخدمة في برنامج تعليم الأحياء بالمرحلة الجامعية، وتوصلت نتيجة تطبيق الاختبار إلى أن 2, 47% من الطلاب لديهم معرفة جيدة ببيولوجيا الخلية وهم من أجابوا إجابة صحية على الشق الأول من كل مفردة، أما نسبة الطلاب الذين لديهم إجابات صحيحة على الشق الثالث "الشفاح الثاني" كانت منخفضة (9, 42%)، في حين كان مستوى الشق الثالث (شفاح الثالث) مرتفعاً بنسبة (74, 62%)، وهذا يعني أن 74, 62% من الطلاب لديهم شق عالية في إجابتهم، على الرغم من وجود 4, 42% فقط من الطلاب هم من أجابوا الإجابة الصحيحة، كما أشارت النتائج إلى أن معظم الطلاب لديهم العديد من التصورات الخاطئة فيما يتعلق ببنية ووظيفة الخلايا، والمكونات الأساسية للخلايا، ونقل المواد عبر غشاء الخلية، وانقسام الخلية.

دراسة جريجس ولوندي (Gregers & Lunde, 2021, Cell as a System) التي استهدفت تحديد التصورات السابقة عن الخلية لدى طلاب الصف الثامن، وتطوير فهمهم لتركيب الخلية ووظيفتها أثناء تدريس بيولوجيا الخلية، وتحقيق ذلك تم استخدام الرسومات كطريقة لتقسيم معرفة الطلاب بأنواع الخلايا والوظيفة الخلية والمكونات الخلوية، كما تم تطبيق اختبار قبلي على مجموعة من الطلاب عددهم (26) طالب وتم تدريس وحدة (الخلية كنظام: Cell as a System)، ثم تطبيق الاختبار بعدياً وكانت النتيجة وجود بعض التصورات الخاطئة لدى الطلاب حول العناصر التالية: 1- جدار الخلية / غشاء الخلية "لا يوجد غشاء الخلية في الخلية النباتية- يوجد غشاء الخلية في الخلية النباتية ولا يوجد في الحيوانية- يوجد جدار الخلية في الخلية الحيوانية- يوجد غشاء الخلية وجدار الخلية في الخلية النباتية" 2- المواد الجينية "الكروموسومات توجد في العصارة الخلوية - الحمض النووي والكروموسومات توجد كترائيب متصلة"، 3- خلط حول بعض المفاهيم مثل: الكروموسومات، الإنقسام المتزمن للميتوكوندريا، الحمض النووي، RNA، DNA، 4- خلط حول بعض مكونات الخلية مثل "الميتوكوندريا غير موجودة بالخلية النباتية -
البلاستيدات الخضراء توجد في خلايا الفطريات - توجد الفجوة العصارية في الخليفة الحيوانية، . هـ - الخلط حول إنتاج طاقة الخلايا " الخلط بين التمثيل الضوئي وتنفس الخلية - الميتوكونديريا مرتبطة بعمليّة التمثيل الضوئي - يتم إنتاج الطاقة من الانقسام - الخلط بين مصدر الطاقة وإنتاج الطاقة، ".

ودراسة سارتيكا، سوسيلو وسليسيزونو ، (2021) التي هدفت إلى تحديد التصورات البديلة لدى الطلاب في موضوع الأنسجة النباتية والحيوانية، تم تطبيق اختبار تشخيصي على مجموعة من الطلاب وعددهم (758) طالب وطالبة بالمرحلة الثانية، وأظهرت النتائج أن 27.2% من الطلاب لديهم تصورات بديلة حول الأنسجة النباتية، ونسبة 72.7% في كيفية نقل الماء والأملاح المعدنية،01.9% في الأنسجة الحيوانية، ووجدت أعلى نسبة من التصورات البديلة في تركيب ووظيفة النسيج البراشيمي بنسبة 88.04%، أما بالنسبة للأنسجة الحيوانية، فقد ظهر أعلى نسبة للتصورات البديلة في تركيب ووظيفة النسيج الطلابي الحرشفي بنسبة 61.99%، وتركيب الأنسجة العضلات الملاصية بنسبة 44.43% ونسبة العظام بنسبة 31.13%، وتوصلت الدراسة إلى أن سبب الصعوبة في فهم هذه الموضوعات إحتواء الأنسجة النباتية والحيوانية على مفاهيم تمثل إلى أن تكون محددة ولذلك يصعب تصويرها بشكل مباشر وأوصت باستخدام أدوات مساعدة مثل الميكروسكوبات أو الصور لتوثيق الأنسجة النباتية والحيوانية.

ثانياً: الواقع المعزز وخطواته وخصائصه وتنظيمه في تدريس علم الأحياء.

يوجد العديد من التعرفات لتقنيات الواقع المعزز ومنها : (Yuen, Yaoyuneyong and Johnson , 119, 2011) : شامل من أشكال التكنولوجيا التي يتم فيها تعزيز الواقع الحقيقي من خلال المحتوى الذي يتم إنشاؤه بواسطة جهاز الحاسب الألي والمرتبط بأنظمة محددة وتعريف إرسينسا، أريا، وويسبو (2, 2019) : تقنية تفاعلية قادرة على عرض أحداث إفتراضية داخل كائنات حقيقية في نفس الوقت، حيث يمكن عرض الكائنات ثنائية الأبعاد في صورة ثلاثية الأبعاد باستخدام كاميرا الهاتف المحمول.
وتعمير فونج وثيو ونجوك (Phuong, Thuy, Thuy, and Ngoc, 2021, 88) هو تقنية تسمح للمعلمين بمشاهدة البيئة الحقيقية بشكل مباشر أو غير مباشر حيث يتم تعزيز مكونات البيئة بالبيانات المنشأة آليًا والخصائص المنشأة مثل الصوت والصورة ونظام تحديد المواقع العالمي (GPS).

يتضمن التعريفات السابقة أن الواقع المعزز هو شكل من أشكال التكنولوجيا التي تعزز بيئة التعلم الحقيقية وتصبح للمعلمين مشاهدة الصور ثلاثية الأبعاد للصور ثلاثية الأبعاد الموجودة بالكتاب المدرسي باستخدام التلفون المحمول، كما يسمح بتعزيز المحتوى بإعداد مقاطع صوتية ومقاطع فيديو ورسوم متحركة باستخدام جهاز الحاسب الآلي يتم ربطها وتحميلها على أحد التطبيقات التي تستخدمها الطلاب.

أصبح الواقع المعزز ممكنًا من خلال أداء أربع مهام أساسية ومميزة وهي كالتالي:

1- الاتصال مشاهد الواقع المارد تعزيزه وذلك باستخدام الكاميرا.

2- عمل مسح ضوئي لمشاهد الواقع الحقيقي التي تم التقاطها بكل دقة، وتحديد المواقع التي سيتم تضمين المحتوى الافتراضي بها، حيث يمكن تحديد هذه المواقع إما عن طريق العلامات المرئية (GPS) أو طريق تطبيقات التتبع أو أجهزة الاستشعار.

3- البحث عن المحتوى الافتراضي المناسب له من الإنترنت أو من قواعد البيانات المحدودة والمعروفة.

4- الدمج بين المشهد الحقيقي والمحتوى الافتراضي باستخدام تطبيقات الواقع المعزز.

كما يتميز الواقع المعزز بعد من الخصائص منها أنه: (Azuma, et al., 2001, 34)

- يجمع بين الأشياء الحقيقية والافتراضية في بيئة حقيقية.
- يعمل بشكل تفاعلي وفي الوقت الحقيقي.
- يسجل (محاذاة) الأشياء الحقيقية والافتراضية مع بعضها البعض.
- يسمح بعرض عناصر رقمية عن المحتوى الموجود بالكتاب المدرسي.

ويمكن استخدام تطبيقات الواقع المعزز في تدريس علم الأحياء، حيث يُعمل الواقع المعزز على تقديم صور واقعية على شاشة الحاسب الآلي عن طريق إضافة كائنات تم
ningen Arslan, Kfoglu Dargut , 2020 , 65) ObjectTarget و MultiTarget Yapici and and (Karakoyun, 2021

كما يمكن استخدام الواقع المعزز كوسيلة للتعلم متعدد الوسائط، حيث يساعد الطلاب في الحصول على معلومات حول الأشياء مثل الأعضاء وأجهزة الجسم وغيرها، كما يمكن للمتعلمين من رؤية كائنات ثنائية الأبعاد كما يحدث عند رؤية المخ البشري الموجود بالكتاب المدرسي في صورة مجسم ثلاثي الأبعاد باستخدام أحد تطبيقات الواقع المعزز، ولا يقتصر الأمر على الأشياء الصغيرة فقط بل يتعدى الأشياء كبيرة الأبعاد مثل الجهاز الهضمي، حيث يعزز إدراك المتعلمين وتفاعلهم مع العالم الحقيقي ويوفر أساليب تعليمية أكثر تنويعًا وتفاعلية للطلاب (Yapici and Erwinsah, Aria and Yusup , 2019 , 2-3)

(Karakoyun, 2021, 46-47)

ويمكن استخدام الواقع المعزز لدراسة تشريح وتركيب الجسم في علم الأحياء، حيث يمكن للمدرسين استخدام تقنية الواقع المعزز لظهار ما بين الأعضاء البشرية وكيف تبدو من خلال مشاهدة النماذج ثلاثية الأبعاد التي يتم إنشاؤها بواسطة الحاسب الآلي في الفصول الدراسية الحقيقية، عادلاً على ذلك، قد يكون الطلاب قادرين على دراسة الأعضاء البشرية والهياكل البيولوجية لجسم الإنسان بشكل مستقل باستخدام أجهزة الحاسوب والهواتف المحمولة المدمجة بالكاميرا (Lee, 2012, 35)

ومن الدراسات التي تناولت تكنولوجيا الواقع المعزز في الأحياء: دراسة وينج وبي ويو، وهسبا (2016) التي استهدفت استخدام تقنية الواقع المعزز في مادة الأحياء في المدارس الثانوية بالمملكة لتنمية فهم الطلاب للظواهر والعمليات المعقدة في مادة الأحياء، وتقيق ذلك تم تدريس موضوع (الإنقسام البزيرو والميتوزي والتنفس الخلوي) من خلال توضيح عمليات التنفس الخلوي (التنفس الهوائي) في الخلية الحيوانية والخليه النباتية باستخدام تقنية الواقع المعزز وما توضحه من رسوم متحركة
ثلاثية الأبعاد لـالخلية الحيوانية والخلية الدبائية، وتوضح كيفية جزيئات الأكسجين في بداية عملية التنفس، بينما يظهر إطلاق جزيئات حمض الدهون والثاني أكسيد الكربون وجزيئات الإيثانول في نهاية عملية التنفس، كما توضح عملية الإنتاج الميتوزي والميتوزي من خلال الرسوم المتحركة والأجسام ثلاثية الأبعاد والتسجيلات الصوتية المتضمنة بتطبيق الواقع المعزز، وأشارت النتائج إلى تنمية فهم الطلاب لعمليات الإنتاج الميتوزي والميتوزي والتكنولوجيا باستخدام تقنية الواقع المعزز.

ودراسة سلامه (2019) التي هدفت إلى الكشف عن فاعلية توظيف الواقع المعزز والخرائط الذهنية الإلكترونية لتنمية مهارات التفكير البصري في مبحث العلوم الحياتية لدى طالب الصف الحادي عشر بغزة، وتحقيق ذلك تم اختيار عينة الدراسة وتكوينها من (101 طالب) تم تقسيمهم إلى ثلاث مجموعات، درست المجموعة التجريبية الأولى وحدة أجهزة جسم الإنسان (الجهاز المحلي - جهاز الغدد الصماء) من خلال توظيف تقنية الواقع المعزز، ودرست المجموعة التجريبية الثانية بتوظيف خرائط الذهنية الإلكترونية، أما المجموعة الثالثة الضابطة درست بالطريقة المعتادة، وتم تطبيق اختبار مهارات التفكير البصري قليلا وبعدًا على مجموعات الدراسة، وتوصلت نتائج الدراسة إلى : وجود فروق ذات دلالة إحصائية عند مستوى دلالة (0,05) بين متوسطات درجات الطلاب في مجموعات الدراسة الثلاث (المجموعة التجريبية الأول، المجموعة التجريبية الثانية، والمجموعة الضابطة) لصالح متوسط درجات طالب المجموعة التجريبية الأولى، وذلك في اختبار التفكير البصري البعدية، كما يحقق توظيف تقنية الواقع المعزز فاعلية مرتفعة (نسبة الكبس المعدل لبلاك = 1,2) في تنمية مهارات التفكير البصري، بينما لا يحقق توظيف تقنية الخرائط الذهنية الإلكترونية فاعلية مرتفعة في تنمية مهارات التفكير البصري.

ودراسة محمد (2020) التي هدفت تنمية مهارات التفكير البصري والميل نحو الأحياء لدى طالب الصف الثاني الثانوي باستخدام نموذج مقترح لتدريب الأحياء يوظف الواقع المعزز في ضوء مبادئ نظرية ماير المعرفية للتعلم من الوسائط المتعددة، وتحقيق ذلك تم اختيار عينة الدراسة وتكوينها من (35 طالب) كمجموعة التجريبية درست موضوعات (جهاز الهضم والغدد الصماء) وفقًا للنموذج المُقترح، و(33 طالب) كمجموعة ضابطة درست بالطريقة المعتادة وتم تطبيق اختبار مهارات التفكير البصري وقياس الميل نحو الأحياء قليلاً.
وبعدًا على مجموعتي الدراسة، وأظهرت النتائج أن النموذج المقترح أدى إلى تنمية مهارات التفكير البصري والميل نحو الأحياء لدى الطلاب.

أما دراسة (Kozcu, Guven and Celik, 2021)

استهدفت تجربة تأثير نماذج تطبيقات الواقع المعزز بالتبليغ المحمول في نموذج دورات التعلم الخمسية في تدريس الأحياء على النجاح الأكاديمي واتجاه معلم الأحياء قبل الخدمة نحو التكنولوجيا الرقمية، تم اختيار (3) معلم قبل الخدمة في مقرر مختبر الأحياء العامة بقسم العلوم بكلية التربية بالجامعة الحكومية بتركيا، وتم تطبيق اختبار تحسيلي مع أسلحة مفتوحة النهاية، مقياس الاتجاه نحو التكنولوجيا الرقمية، وأشارت النتائج إلى أن ممارسة تطبيقات الواقع المعزز بالتبليغ المحمول في مراحل دورات التعلم (المشاركة - الاستكشاف - التفسير - التوسيع - التقييم) في معالج الأحياء قد زادت من النجاح الأكاديمي وأثرت بشكل إيجابي على اتجاه المعلمين قبل الخدمة نحو التكنولوجيا الرقمية. علاوة على ذلك، وأوضح معلم الأحياء قبل الخدمة أن تطبيقات الواقع المعزز يسرع تعلمهم وفهمهم، مما يجعل الدروس أكثر جاذبية.

ونشرت دراسة (Yapici and Karakoyun, 2021)

للتعرف على آراء المعلمين قبل الخدمة حول تطبيق الواقع المعزز في تدريس علم الأحياء، ولتحقيق ذلك تم تنفيذ أنشطة الواقع المعزز الخاصة بدورة حياة الطحالب، الجهاز العضلي، التنفس الهوائي، الفيروسات، دورة النباتي، وشرح القلب على مجموعة الدراسة التي تكونت من (16) طالب من طلاب الفترات الثلاثة من قسم تدريس علم الأحياء بكلية التربية الذين درسوا مقرر تقنيات التعليم وإنتاج المواد، ثم تم تطبيق استبيان الواقع المعزز على الطلاب لمعرفة إجابات وسبل استخدام الواقع المعزز في تدريس الأحياء، ووصفت النتائج إلى إتفاق الطلاب في بعض الإجابات لاستخدام الواقع المعزز منها تبسيط المفاهيم المجردة والأحتفاظ بالتعلم وزيادة مشاركة الطلاب في الدروس وتسهيل عملية التعلم، كما ذكر الطلاب بعض السبل لاستخدام الواقع المعزز منها أن التطبيقات التكنولوجية يمكن أن تمتع التواصل بين الطلاب، وخلق مشاكل في العين وتحتاج إلى مدارس تكنولوجية، وأيضًا افتقار بعض الطلاب للمعرفة التكنولوجية يجعلهم يفكرون بشكل سلبي في استخدام تطبيقات الواقع المعزز وعدم قابليتها.
دراسة رحمي وووبايا و كهارودين (2021) التي استهدفت استخدام نموذج التعلم المدمج عن طريق استخدام تقنية الواقع المعزز باستخدام التلفون المحمول في بيئة الفصل الدراسي (التعلم وجهة ووجه) لتعزيز فهم الطلاب لتركيب ووظيفة الخلايا الحيوانية، و لتحقيق ذلك من الهدف من تذكير مراحل التعلم الأولي: مرحلة الإعداد تم اعداد المواد التعليمية اللازمة لإنشاء الواقع المعزز، المرحلة الثانية: مرحلة التصميم تم تصميم بيئة الواقع المعزز التي تضمنت العديد من الفيديوهات والرسوم المتحركة والإجهاض الثلاثة الأبعاد التي توضح تركيب ووظيفة الخلايا الحيوانية، المرحلة الثالثة: مرحلة التطبيق تم استخدام وتطبيق تقنية الواقع المعزز ثم المرحلة الرابعة: مرحلة التقييم يقوم يوم ألعاب مسؤولية إجراء تقييم ما تم دراسته في موضوع الخلايا الحيوانية.

يتضح من الدراسات السابقة أنها أكدت على ضرورة استخدام تقنية الواقع المعزز في تدريس الأحياء، لأنها تساعد على تحويل المفاهيم والدروس المجردة إلى أشياء ملموسة ومحسوسه ومرئية تسمح على الطلاب إدراكها وفهمها بصورة واضحة صحية.

نموذج التعلم التوليد ومراحله ودوره في تعدل التصورات البديلة (Grabowski, 2007, 719) وينسود النظرية البنائية على أن الخبرة الشخصية للتعلم هي المحدد الأساسي لمعرفة الفرد وهو الذي يقوم ببناءها ولا يستطيع بصورة سلبية من الآخرين، ولكي يحدث التعلم يجب تزويده بالمعلومات التي تمكن من ربط المعلومات الجديدة بما لديه من معرفة سابقة، وتمكنه من إعادة تشكيل المعاني والتصورات السابقة لديه بما يتفق مع المعاني والتصورات العلمية السليمة المقبولة (الدليمي, 2014, 27) ويعتبر نموذج التعلم التوليد أحد النماذج التي تتبع النظرية البنائية الاجتماعية، حيث أنها تشدد على دور الآخر في بناء المعرف لدى الفرد وتوفر خاصية على الصراح في النمو الفردوي والاجتماعي حيث يساعد التفاعل الاجتماعي على نمو البنية المعرفية للفرد وتطوره باستمرار (الجدد ودابود, 2016, 221), فالتعلم البنائي الاجتماعي عملية تعدل فيها المعرفة الداخلية للمتعلم كاستجابة للاضطرابات الناتجة عن كل من التفاعل الاجتماعي والشخصي، حيث يلعب التفاعل

العدد (17) يوليو (3) 2021

مجلة تربويات التربويات البديلة
الاجتماعي دور هام في إعادة بناء البنية المعرفية اعتمادًا على الخبرات. (النجمي وراشد، 2000، 294)
ويعتبر هانك (2012، 1356)،Hanke، بأنه نموذج يتم فيه عملية بناء المعنى من خلال توليد العلاقات والارتباطات بين المحفزات (المثيرات) والمعرفة الموجودة، المعتقدات والخبرات.

1- المرحلة التمهيدية: في هذه المرحلة يقوم المعلم بالتمهيد للدرس، ويتعرف على أكاديمياً المعالم الموجودة في بنية المفهومية وتوضيحها، وذلك من خلال إثارة المعلم لمجموعة من الأسئلة حول المفهوم أو المعلومات موضع الدراسة، ثم بعد ذلك يسمح للمتعلم للأسئلة بالإجابة عن هذه الأسئلة، ويستجيب الطلاب إما بالإجابة اللفظية أو الكتابة في دفاترهم الإبرة ومن خلال هذه الإجابات توضح النصيارات الموجودة في بنية المتعلم المعرفية حول المفهوم موضع الدراسة، ثم بعد ذلك يقسم المتعلم إلى مجموعات صغيرة.

2- مرحلة التركيز: في هذه المرحلة يوجه المعلم الطلاب للعمل في المجموعات، كما يقوم المعلم بعمل سياق يستطيع المتلمذ في تغيير عن مفاهيمه، وذلك من خلال قيام المعلم بوضع الخروج المناسبة وإثارة لمجموعة من الأسئلة ذات النهايات المفتوحة، بينما يقوم المتعلم بتبليغ المعلومات وتلميحاتها وتخزينه ومعرفة المواد التي يستخدمونها في الكشف والتعمق فيما يحدث، وطرح تساؤلات حول المفهوم، وإخضاع أفكاره الخاصة للمناقشة من خلال المواجهة والحوار بين أفراد كل مجموعة.

3- مرحلة التحدي: في هذه المرحلة يوفر المعلم الفرص للمتعلمين لتغيير وجهات نظرهم، وذلك من خلال إنشاء علاقات بين المعلومات التي براها المتعلمين والتي يسمعونها، وبين المعلومات السابقة الموجودة في الذاكرة لديهم، كما يعد المتعلم تنظيم المعلومات وتقصيلها أو إعادة تصويرها من خلال المناقشة بين طلاب الفصل بالكامل مع إثارة الفكرة لهم للمساهمة بإلحاظاتهم وفهمهم، ورؤية أنشطة الفصل بالكامل ومساعدتهم بالدعاة التعليمية المناسبة مع إعادة تقديم المصطلحات أو المفاهيم العلمية، وإثارة التحدي بين ما كان يعرفه في مرحلة التمهيد وما تعرفه أثناء التعلم، وأيضاً يتم في هذه المرحلة تحقيق الفهم الهدف والنتائج المتوقعة.
في المرحلة التعليمية، يقوم الطلاب بتقديم المفاهيم وتقديم المساعدة في حل المشكلات أو الأسئلة التي تتطلب تطبيق المفاهيم أو المعلومات أو المعرفة في حلها، أي استخدام المفاهيم كأدوات وظيفية لحل المشكلات في مواقف جديدة.

ويتمكن تلميذ دور المعلم والمتعلم في كل مرحلة من مراحل النموذج كما يلي:

<table>
<thead>
<tr>
<th>مراحل النموذج</th>
<th>دور المعلم</th>
<th>دور المتعلم</th>
</tr>
</thead>
<tbody>
<tr>
<td>المرحلة التمهيدية</td>
<td>مراقبة واستماع الطلاب نحو التفكير والتفصيل، ويتم تقديم المساعدة والدعم.</td>
<td>يقوم بتقديم المفاهيم والمساعدة إلى الطلاب من خلال التواصل النشط والتفاعل الجماعي.</td>
</tr>
<tr>
<td>المرحلة التحدي</td>
<td>يقدم المناقشة الجماعية.</td>
<td>يقوم بتقديم التساؤلات والضغوطات، واستخدام التساؤلات ذات الصلة للمقارنة بين ما توصلوا إليه وما يعرض، والتكشا بينهما.</td>
</tr>
<tr>
<td>المرحلة التطبيقية</td>
<td>ينكر مواقف جديدة تتحدى تفكير الطلاب ليطبقوا الأفكار الجديدة، يقدم الدعم اللازم لطلابه سواء أكان مثالياً أو مثالياً.</td>
<td>يستخدم الأفكار الجديدة في المواقف للتأكد من اكتسابهم المفاهيم والحقائق الصحيحة.</td>
</tr>
</tbody>
</table>

جدول (1) دور المعلم والمتعلم في نموذج التعلم التوليدي

مجلة كليّات التربّية- الجزيرة العربية

العدد (167) يوليو (3) 2021
ويساعد توظيف نموذج التعلم التوليدي في تعديل التصورات البديلة عن المفاهيم العلمية، حيث تجعل البنائية المعتمدة كمشارك نشط في بناء المعرفة والتحديات من خلال نموذج التعلم التوليدي، ويأتي الطلاب إلى حجز الدراسة حاملين الكثير من الأفكار السائدة حول العلم الذي طوره على مر السنين، وإذا كانت المعرفة التي يمتلكها الطلاب خاطئة، فإنها تعيق عملية التعلم أو تؤدي إلى التعلم الخاطئ، وبالتالي فإن المعرفة الخاطئة أو غير الصحيحة عادة ما توصف بأنها مفاهيم أو أفكار أو معلومات خاطئة يجب تحديثها وتصحيحها قبل بدء عملية التعلم. ويُعتبر نموذج التعلم التوليدي من النماذج التي تعالج المفاهيم والأفكار الخاطئة للطلاب والتحديات ويصححها. وبالتالي فإنه يؤدي إلى بناء معرفة جديدة من خلال المشاركة النشطة للمتعلمين في التغيير المفهيمي (Reshmi, 2018).

حيث يعتمد نموذج التعلم التوليدي على استدعاء المعلومات المخزنة في الذاكرة طويلة المدى لدى التعلم، مما يشجع التعلم على تعلم محتوى جديد قائم على الحقائق باستخدام المعلومات التي حصل عليها بالفعل، كما يدمج المعلومات الجديدة مع المعرفة التي تم جمعها وتخزينها بالفعل لإعادة بناء المعلومات الجديدة، كما يستطيع التعلم إضافة مفاهيم جديدة إلى المعلومات التي جمعها من خلال تحليل الأفكار (Reshmi, 2018).

كما يساعد الواقع المعزز في عملية التعلم على تحسين بناء الطلاب للمعرفة كما يتوقف الواقع المعزز جيدًا مع مفاهيم التعلم البنائي، حيث يمكن للمتعلمين من التحكم في تعلمهم والتعامل مع الأشياء غير الحقيقية في الواقع المعزز لتشكل واتساع وفهم المعلومات والمعرفة بأنفسهم، حيث يلتزم الواقع المعزز بالمبادئ الأساسية لنظرية التعليم البنائية، فالمعلم هو الميسر الذي يوجه المتعلمين من خلال بناء معرفتهم بأنفسهم تمامًا مثل أي متعلم في محاكاة أفتراضية حية التصميم، فإن المتعلم هو من يتحكم في بيئة التعلم البنائية (Samat and Chaijaroen, 2019).

وتم تطبيق الأدوات قبليًا، وتدرّس وحدة (اللاقتراحات) للمجموعة التجريبية الأولى وعدها (30) طالب باستخدام نموذج التعلم التواليدي والتدريب للمجموعة التجريبية الثانية وعدها (30) طالب باستخدام العصف الذهني والتدريب بطريقة المعتادة للمجموعة الضابطة وعدها (30 طالب، وتوصّلت نتائج الدراسة إلى فاعلية نموذج التعلم التواليدي والعصف الذهني في تنمية المفاهيم والاتجاه نحو الأحياء، ولا يوجد فروق دالة إحصائيًا بين متوسطات درجات طلاب المجموعتين التجريبية الأولى والثانية في التطبيق البديل لأدوات الدراسة.

وردّسة عزام (2016) هدفت إلى التعرف على فاعلية نموذج التعلم التواليدي في تنمية مهارات التفكير فوق المعرفي والتحصيل لدى طلاب المرحلة الثانوية في مادة الأحياء، تكّونت أدوات الدراسة من مقياس مهارات التفكير فوق المعرفي، واستنتاج تحصيلي في مادة الأحياء، وتم تطبيق أدوات الدراسة قبليًا على مجموعتي الدراسة، المجموعة التجريبية التي درست باستخدام نموذج التعلم التواليدي والمجموعة الضابطة التي درست باستخدام الطريقة المعتادة، وتم تطبيق الأدوات بعديًا، وقد أشارت النتائج إلى فاعلية نموذج التعلم التواليدي في تنمية مهارات التفكير فوق المعرفي والتحصيل لدى طلاب الصف الأول الثانوي في مادة الأحياء.

وردّسة داوود (2018) التي أجريت بهدف معرفة أثر استراتيجيّة التعلم التواليدي في تحصيل مادة الأحياء والتفكير المنظومي لدى طلاب الصف الثاني المتوسط، والتحقيق من ذلك تم إعداد أدوات الدراسة المتمثلة في اختبار تحصيلي، واستنتاج التفكير المنظمي وفقًا لثلاث مهارات (1- إدراك العلاقات بين أجزاء التشكئ المنظمي وتكملة الجمل المعطاة، 2- تكملة العلاقات بين أجزاء التشكئ المنظمي، 3- بناء التشكئ المنظمي) وتم تطبيق الاختبارين قبليًا على مجموعة الدراسة التي تكّونت من (60) طالب قسم إلى مجموعتين متساويتين تجريبيّة وضابطة تم التدرّس للمجموعة التجريبية باستخدام استراتيجية التعلم التواليدي والمجموعة الضابطة باستخدام الطريقة المعتادة والتطبيق بعديًا للاختبارين، وتوصّلت النتائج إلى وجود فروق ذات دلالة إحصائيّة عند مستوى .05 بين متوسط درجات المجموعة التجريبية ومتوسط درجات المجموعة الضابطة في تحصيل مادة الأحياء و في التفكير المنظمي لصف الثاني متوسط لصالح المجموعة التجريبية.
دراسة براوينت وبرايروتو ووسوجارتو (2019) التي أجريت لتحقيق من فاعلية وحدة في الأحياء القائمة على التعليم الترويدي لتحسين مهارات التفكير التحليلي للطلاب ذوي الدافعية العالية والمنخفضة في القراءة، وتحقيق ذلك تم إعداد أدوات الدراسة المتمثلة في: اختيار مهارات التفكير التحليلي والتي تتضمن أربعة مهارات (قياس المعلومات والأفكار، تحديد أوجه تشابه والاختلاف الواقع من خلال المعلومات المقدمة، تطوير الفرضيات، ووصف العلاقة بين الجمل أو أجزاء من المفهوم لإتخاذ القرار) واستبيان لقياس الدافعية للقراءة، وتم تطبيق الأدوات قبلًا على مجموعتين من الدراسة، المجموعة الضابطة وعدها (36) طالب بالمرحلة الثانوية التي درست الوحدة بالطريقة المعادة والمجموعة التجريبية وعدها (36) طالب التي درست وحدة الأحياء القائمة على التعليم الترويدي، وأشارت النتائج إلى فاعلية وحدة الأحياء القائمة على التعليم الترويدي في تحسن مهارات التفكير التحليلي للطلاب ذوي الدافعية العالية والمنخفضة في القراءة، بينما لم يكن هناك تأثير على دافعية القراءة من خلال مهارات التفكير التحليلي لدى الطلاب الفضبان، بل كان هناك أيضًا تفاعل بين الوحدة القائمة على التعليم الترويدي ودافعية القراءة لدى الطلاب تجاه مهارات التفكير التحليلي.

دراسة درويش (2019) التي أجريت بهدف التعرف على فاعلية برنامج قائم على التعليم الترويدي في تنسج مهارات التفكير البصرى وتعديل التصورات البديلة لدى طلاب الصف الثاني عشر بمادة الأحياء بالمرحلة الثانوية بدوحة الكويت، وتحقيق ذلك تم إعداد اختبار مهارات التفكير واختبار التصورات البديلة، كما تم تدريس وحدة (أجهزة جسم الإنسان) باستخدام برنامج قائم على التعليم الترويدي وتكوين مجموعة الدراسة من (64) طالبة من طلاب الصف الثاني عشر موزعة بالتساوي على مجموعتين تجريبية وضابطة وتوصلت النتائج إلى وجود فرق ذا دلالة إحصائية بين متوسطات درجات طلاب المجموعة التجريبية ومتوسطات درجات طلاب المجموعة الضابطة في القياس الابتدائي لاختبار مهارات التفكير البصرى، وجود فرق ذا دلالة إحصائية بين متوسطات درجات المجموعة الضابطة في القياس الابتدائي لاختبار التصورات البديلة (الأبعاد -الدرجة الكلية) بعد التطبيق لصالح أفراد المجموعة التجريبية.
الفرض الأول: توجد تصورات بديلة مرتبطة بعلم الخلية لدى طلاب الصف الأول الثانوي.
الفرض الثاني: يوجد فرق ذو دلالة إحصائية بين متوسطي درجات التطبيق القيبي والتطبيق البدع في تصورات المجموعة التجريبية في التصورات البدعة عن عضيات الخلية في اختبار التصورات البدلة عن الخلية لصالح التطبيق البدع.
الفرض الثالث: يوجد فرق ذو دلالة إحصائية بين متوسطي درجات التطبيق القيبي والتطبيق البدع في تصورات المجموعة التجريبية في التصورات البدلة عن الأنسجة النباتية.
الفرض الرابع: يوجد فرق ذو دلالة إحصائية بين متوسطي درجات التطبيق القيبي والتطبيق البدع في تصورات المجموعة التجريبية في التصورات البدلة عن الأنسجة الحيوانية.
الفرض الخامس: يوجد فرق ذو دلالة إحصائية بين متوسطي درجات التطبيق القيبي والتطبيق البدع في تصورات المجموعة التجريبية في مجموعة مجالات التصورات البدلة في اختبار النبوات البدلة عن الخلية لصالح التطبيق البدع.

إجراءات البحث:

أولا: إعداد اختبار التصورات البدلة لعلم الخلية "التركيب والوظيفة":

- تم إعداد الاختبار في ضوء الخطوات التالية:

1- إعداد قائمة بالصورات البدلة المرتبطة بعلم الخلية لدى طلاب الصف الأول الثانوي، وتحقيق ذلك تم إجراء الخطوات التالية:

- دراسة البحوث والدراسات السابقة التي تناولت التصورات الخاطئة في علم الخلية مثل دراسة (Sharma & Kaur, 2016) ودراسة (Dikmenli, 2010)، ودراسة (Duda & Adpriyadi, 2020).
- مراجعة محتوى الباب الثاني بكتاب الأحياء بالصف الأول الثانوي (الخليفة: التركيب والوظيفة).
- تطبيق استبيان يتضمن أسئلة مفتوحة على مجموعة من طلاب الصف الأول الثانوي وعددهم (35) طالب بعد دراسة الباب الثاني : الخلايا: التركيب والوظيفة بمادة الأحياء، تحليل إجابات الطلاب ووصول إلى القائمة النهائية للتصورات البدلة المرتبطة بالباب الثاني (الخليفة: التركيب والوظيفة).
- وتنطبق التصورات البدلة في الجدول التالي:
جدول (2) قائمة التصورات البديلة حول الخلية "التركيب والوظيفة" لدى طالب

الصف الأول الثانوي

<table>
<thead>
<tr>
<th>التصورات البديلة</th>
<th>مجالات التصورات البديلة</th>
</tr>
</thead>
<tbody>
<tr>
<td>الخلط بين الغشاء البلازمي وجدار الخلية حيث عرف الطلاب جدار الخلية بأنه غشاء رقيق يقوم بمنع انتشار البروتينات خارج الخلية.</td>
<td></td>
</tr>
<tr>
<td>حدد الطلاب سبب تماسك الغشاء البلازمي هو أن ترتبط جزيئات الفوسفوليبيدات في الغشاء البلازمي بجزيئات البروتين</td>
<td></td>
</tr>
<tr>
<td>تركيب غشاء الخلية هلامي لأنه يشبه طبقة الزيت على سطح الماء.</td>
<td></td>
</tr>
<tr>
<td>يتكون غشاء الخلية من بروتينات وهي تكون في حالة سائقة النوية هي أوضح عضيات الخلية تحت المجهر ويتم فصل محتوياتها عن السيتوبلازم.</td>
<td></td>
</tr>
<tr>
<td>السيتوبلازم يكسب الخلية دعامة تساعد في الحفاظ على شكل الخلية وقوانينها لأنه يحتوي على الماء والمواد العضوية. النواة توجد في أحد أطراف الخلية.</td>
<td></td>
</tr>
<tr>
<td>الجسم المركزي يوجد في خلايا الطحالب.</td>
<td></td>
</tr>
<tr>
<td>يظهر الكروموسوم أثناء الانقسام الخلوي مكون من خيوط متصلة. يتحول الكروماتيد أثناء انقسام الخلية إلى تركيب عصوية الشكل.</td>
<td></td>
</tr>
<tr>
<td>الجسم المركزي يلعب دوراً مهمًا في إنقسام الخلية إلى خليتين لأن خيوط المغزل تحت بين السنتروبلان الموجودان في وسط الخلية تحتوى الخلايا العصبية على جسمين دقيقين يعرفان بالسنتروبلين.</td>
<td></td>
</tr>
<tr>
<td>البلاستيدات الخضراء تحول الطاقة الكيميائية إلى طاقة ضوئية. تتأتى الشبكة الإندوبلازمية السائل النووي وتتصل بغشاء الخلية. تختص الشبكة الإندوبلازمية الخشنة بتحقيق الليبيدات في الخلية. الليسوسومات تقوم بتصنيع البروتين في الخلية. تقوم الميتوكوندريا بوظيفة هامة في الخلية وهي تخزين الماء والمواد الغذائية.</td>
<td></td>
</tr>
<tr>
<td>الجسم المركزي هو العضو المسؤل عن تكوين الليسوسومات</td>
<td></td>
</tr>
<tr>
<td>التصورات البديلة</td>
<td>مجالات التصورات البديلة</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ينعكس النسيج البرانشييمي من خلايا متنوعة في الشكل والوظيفة.</td>
<td>التصورات البديلة</td>
</tr>
<tr>
<td>يقوم النسيج البرانشييمي بنقل المواد الغذائية وتدعيم النبات.</td>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها</td>
</tr>
<tr>
<td>ينعكس النسيج الخشب من الأداني الغربي والخلايا المتراصة.</td>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها</td>
</tr>
<tr>
<td>النسيج الكولونشييمي يقوم بتدعيم وتسهيل النبات وإكسابه الصلاحية.</td>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها</td>
</tr>
<tr>
<td>يحتوي النسيج الإسكلاشنسيمي على مادة السيلولوز.</td>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها</td>
</tr>
<tr>
<td>يقوم الخشب بنقل المواد الغذائية الناتجة عن عملية البناء الضوئي من الأوراق إلى باقي الأجزاء.</td>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها</td>
</tr>
<tr>
<td>ينعكس اللحاء من الأوعية والخصوصيات.</td>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها</td>
</tr>
</tbody>
</table>

1- تحديد الهدف من الاختبار: هدف الاختبار إلى قياس وتشخيص التصورات البديلة المرتبطة بالخلية في الباب الثاني (الخلية: التركيب والوظيفة) لدى طلاب الصف الأول الثانوى.

2- صياغة مفردات الاختبار: تم إعداد اختبار ثلاثي الشق تتضمن (28) مفردة اختيار من متعدد؛ تتكون كل مفردة من ثلاثة أجزاء، الجزء الأول عبارة عن سؤال يليه أربعة بدائل يوجد بها بديل واحد صحيح وباقي البديل خاطئ، والجزء الثاني عبارة عن أربعة بدائل يوجد بها بديل واحد صحيح تتعبر عن سبب اختيار الطالب للإجابة في الشق الأول والجزء الثالث عبارة عن تحديد يقين الإستجابة (إذا كان الطالب واثق من الإجابة أم غير واثق)، وتتضمن الاختبار ثلاث مجالات من التصورات البديلة المرتبطة بالخلية كما يوضح من جدول التالي:
<table>
<thead>
<tr>
<th>المفردات التي تقيسها</th>
<th>التصورات البديلة المرتبطة بالخلية</th>
</tr>
</thead>
<tbody>
<tr>
<td>التصورات البديلة عن عضيات الخلية ووظيفتها من المفردة ۱</td>
<td>۱۶</td>
</tr>
<tr>
<td>التصورات البديلة عن الأنسجة النباتية ووظائفها من المفردة ۱۷</td>
<td>۲۳</td>
</tr>
<tr>
<td>التصورات البديلة عن الأنسجة الحيوانية ووظائفها من المفردة ۲۴</td>
<td>۲۸</td>
</tr>
</tbody>
</table>

3- وضع توصيات الاختبار: تمت كتابة توصيات الاختبار، وقد روعي في كتابتها الدقة والوضوح، وتضمنها بما يجب على الطالب اتباعه، اعتمدت توصيات الاختبار على فكرة مبسطة عن الدقة في الاختبار وعدد مفردات طريقة الإجابة عليها، كما تضمنت مثال توضيحي لطريقة الإجابة وكما تناولت هذه التوصيات بعض النقاط:

- قراءة المفردات جيداً واختيار بديل واحد فقط صحيح في الشق الأول والشق الثاني.
- الإجابة عن جميع المفردات الموجودة بالاختبار.
- الإجابة في الورقة المخصصة للاختبار الإجابة.

4- طريقة تصحيح الاختبار: اعتمد التقدير الكمي للاختيار على إعطاء درجة واحدة للطالب عند اختيار الإجابة الصحيحة (الشق الأول من المفردة)، وكذلك درجة واحدة عند تحديد سبب اختيار الإجابة تحديداً صحيحاً (الشق الثاني من المفردة)، وإعطاء صفر عند الإجابة الخاطئة على المفردة أو سبب اختيار الإجابة، ودرجة واحدة عند تحديد بعين الإجابة (متأكد)، وإعطاء صفر عند يقين الإجابة (غير متأكد) (الشق الثالث من المفردة).

وبذلك يكون لكل مفردة (۳) درجات، وتكون الدرجة الكلية للاختبار (۸۴) درجة، ودرجة المجال الأول من الاختبار "التمورات البديلة عن عضيات الخلية ووظائفها " (۴۸) درجة، أما المجال الثاني "التمورات البديلة عن الأنسجة النباتية ووظائفها " (۲۱) درجة، والمنطقة الثالث "التمورات البديلة عن الأنسجة الحيوانية ووظائفها " (۱۵) درجة.

5- عرض الاختبار على السادة المحكمين

تم عرض الاختبار على مجموعة من السادة المحكمين ملحق (۲) بهدف إبداء الرأي فيه من حيث:
مدى صحة الصياغة اللغوية للمفردات والبديال.
مدى صحة المفردات والبديال من الناحية العلمية.
مدى مناسبة المفردات لمستوى الطلاب.
مدى ملائمة المفردات لما وضعت لقياسه.

6- الدراسة الاستطلاعية للاختبار

تم تطبيق الاختبار على مجموعة من طلاب الصف الأول الثانوي بمدرسة
سندون الثانوية المشتركة بإدارة قلوب، محافظة القليوبية وعدها (30) طالب
وطالبة، لحساب زمن وصدق وثبات الاختبار.

7- تحديد زمن الاختبار : تم حساب الزمن المناسب للإجابة على مفردات الاختبار
باستخدام معدلة الزمن (السيد، 2014، 277)، وتبين أن زمن الاختبار (90) دقيقة,
وبذلك أصبح الاختبار في صورته النهائية ملحق (3).

8- حساب صدق الاختبار :

لحساب صدق الاختبار تم حساب الصدق التوكيني من خلال حساب معامل
الارتباط بين درجة المفردة والدرجة الكلية للاختبار محدوداً منها درجة المفردة، وتم
ذلك باستخدام برنامج SPSS

جدول (4) حساب معامل الارتباط بين درجة المفردة والدرجة الكلية للاختبار

محدوداً منها درجة المفردة

<table>
<thead>
<tr>
<th>المعامل الارتباط المفردة</th>
<th>المعامل الارتباط المفردة</th>
<th>المعامل الارتباط المفردة</th>
<th>المعامل الارتباط المفردة</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>0.357</td>
<td>0.357</td>
<td>0.357</td>
<td>0.357</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.439</td>
<td>0.439</td>
<td>0.439</td>
<td>0.439</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.385</td>
<td>0.385</td>
<td>0.385</td>
<td>0.385</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>0.488</td>
<td>0.488</td>
<td>0.488</td>
<td>0.488</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.316</td>
<td>0.316</td>
<td>0.316</td>
<td>0.316</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.394</td>
<td>0.394</td>
<td>0.394</td>
<td>0.394</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.371</td>
<td>0.371</td>
<td>0.371</td>
<td>0.371</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.391</td>
<td>0.391</td>
<td>0.391</td>
<td>0.391</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.384</td>
<td>0.384</td>
<td>0.384</td>
<td>0.384</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0.492</td>
<td>0.492</td>
<td>0.492</td>
<td>0.492</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.437</td>
<td>0.437</td>
<td>0.437</td>
<td>0.437</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
يُضحى من الجدول السابق أن قيمة معامل الارتباط بين درجة المفردة والدرجة الكلية للاختبار محذوف منها درجة المفردة تراوحت بين (17, .611, 0.001) وجميعها قيم دالة عند مستوى دالة 0.01 أو 0.05.

- حساب ثبات الاختبار : تم حساب ثبات الاختبار من خلال حساب قيمة معامل ألفا كروناخ وبلغت قيمته (74, 0) وهي قيمة مرتفعة، ودالة عند مستوى 0.01 مما يدل على ثبات الاختبار.

ثانيًا: إجراءات توظيف الواقع المعزز في تصميم التعلم في البحث الحالي

- يتم تصميم الواقع المعزز وفقًا لنموذج تصميم التعليمي النموذج العام ADDIE، وذلك لمناسسته لتصميم الواقع المعزز، كما أنه يعتبر الأساس لكل نماذج التصميم. وقد تم استخدامه في العديد من الدراسات التي تناولت الواقع المعزز مثل دراسة رضا (2018) ودراسة محمد (2020) ويتكون النموذج من خمس مراحل رئيسة، هي التحليل، التصميم، التطوير، التدريب، والتشخيص ويمكن توضيحها كما يلي:

أولاً: مرحلة التحليل

يتضمن القيام بالخطوات التالية:

- تحديد الهدف من استخدام تقنية الواقع المعزز: يستخدم في تصميم التصورات البديلة المرتبطة بعلم الخليفة لدى طلاب الصف الأول الثانوي.
- تحديد خصائص الطلاب: ينبغي أن توفر لدى الطلاب مهارات استخدام اليوهانج الذكية والقدرة على التعامل مع شبكة الإنترنت وممارسات تحميل التطبيق الخاص بالواقع المعزز على الهواتف المحمولة المستخدمة في البحث وهو تطبيق CoSpaces Edu.
- تحليل بيئة العمل الإلكترونية: يتطلب استخدام الواقع المعزز بيئة عمل تحتوي على هواتف محمولة بتطبيق الواقع المعزز المستخدم في البحث الحالي.
- تحديد الأهداف الإجرائية: تم صياغة الأهداف السلوكية لكل موضوع من الموضوعات الباب الثاني: الخليفة: التركيب والوظيفة، مع مراعاة أن تكون قابلة للملاحظة والقياس.

اختر تطبيق الواقع المعزز: تم دراسة تطبيقات الواقع المعزز المختلفة مثل PH، CoSpaces Edu، Unity 3D، Layer، Reaveal
ثانيًا: مرحلة التصميم:

وتم فيها القيام بالخطوات التالية:
- تخطيط العناصر الرقمية: تم تحديد الصور ثلاثية الأبعاد ومقاطع الفيديو والمقاطع الصوتية والرسوم المتحركة وغيرها التي تم استخدامها في تعزيز الباب الثاني
(الخليفة: التركيب والوظيفة)

- كتابة السيناريو: حيث تم كتابة الخطوات التنفيذية لانتاج الواقع المعزز وتوضيح تتابع العناصر الرقمية التي تم ربطها بتطبيق الواقع المعزز المستخدم في البحث الحالي.

ثالثًا: مرحلة التطور (الإنتاج):

وتم فيها القيام بالخطوات التالية:
- جمع العناصر الرقمية التي تم تحديدها في المرحلة السابقة من شبكة الإنترنت، وإعداد مالم متوفر منها مثل (إعداد الصور ثلاثية الأبعاد ومقاطع الفيديو والرسوم المتحركة والمقاطع الصوتية) باستخدام البرامج المخصصة لذلك.
- ربط العناصر الرقمية التي تم إعدادها وتحميلها على تطبيق الواقع المعزز المستخدم في البحث الحالي.
CoSpaces Edu

رابعا: مرحلة التطبيق:

وتم فيها القيام بالخطوات التالية:
- تطبيق الواقع المعزز على عينة استطلاعية من طلاب الصف الأول الثانوي عددها (25 طالبة بمدرسة أم المؤمنين الثانوية بينها للتأكد من ظهور العناصر الرقمية من فديوهات ورسوم متحركة وصور ثلاثية الأبعاد التي تم ربطها وتحميلها بتطبيق الواقع المعزز المستخدم ولتحديد المشكلات التي يمكن أن تحدث عند التطبيق الفعلي.
- العمل على حلها.

خامسًا: مرحلة التقويم:

وتم فيها القيام بالخطوات التالية:
- بعد الانتهاء من التجربة الاستطلاعية لعناصر محتوى الواقع المعزز، وتغيير بعض العناصر التي لم تعمل بشكل جيد، تم عرض أنظمة الواقع المعزز على مجموعة من السادة المحتملين لضبطها وتعديلها في صورتها النهائية.
العدد (137) - يوليو (3) 2021

مجلة ضوابط الترجمة والبحث

ثالثاً: تحليل فاعلية دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدى لتصويب البديلة المرتبطة بالخليية " التركيب والوظيفة "

تم إجراء الخطوات التالية:

1- إعداد أوراق العمل:

تم إعدادها وفقاً للخطوات التالية:

- تحديد الهدف من أوراق العمل: هدف أوراق العمل إلى مساعدة الطلاب على دراسة الباب الثاني الخلية: التركيب والوظيفة عن طريق دمج الواقع المعزز في مراحل نموذج التعلم التوليدى، وذلك بهدف تصويب التصورات البديلة المرتبطة بعلم الخليية بالباب الثاني (الخليية: التركيب والوظيفة) الموجودة لدى الطلاب.

- مكونات أوراق العمل: تحتوى كل ورقة عمل على:

 - النشاط التمهيدي الذي يتضمن سؤال أو مجموعة من الأسئلة للتعرف على أفكار الطلاب الموجودة في بنية المعرفة للكشف عن التصورات البديلة الموجودة لديهم.

 - أنشطة الواقع المعزز مستخدمة أحد تطبيقاته وهو تصويب التصورات البديلة الموجودة لدى الطلاب.

 - أنشطة تطبيقية لتطبيق المعرفة أو المعلومات أو التصورات التي تم تصويبها في مواقف جديدة.

 - مجموعة من الأسئلة التقويمية لمعرفة مدى تصويب التصورات البديلة الموجودة لدى الطلاب.

2- إعداد دليل المعلم

تم اتباع الخطوات التالية:

- تحديد الهدف من الدليل: هدف الدليل إلى توضيح الخطوات التي يتبعها المعلم في تدريس موضوعات الخلية " التركيب والوظيفة " عن طريق دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدى.
تحديد محتوى الدليل: تضمن الدليل العناصر التالية:

- المقدمة: تشتمل مفهوم التصورات البديلة في الخلية، مفهوم الواقع المعزز، تطبيقه،
- كيفية استخدام تطبيق CoSpaces Edu دمج الواقع المعزز في مراحل نموذج التعليم التوليدي، ودور المعلم والتعلم في المراحل.
- قائمة بموضوعات الباب الثاني: الخلية التركيب والوظيفة.
- الخطوة الزمنية للتدريس.
- الأهداف العامة لتدريس الموضوعات.
- الموضوعات، ويشتمل كل منها على: الأهداف السلوكية، تطبيق CoSpaces Edu
- المحمول على التلقيحات المحمولة للطلاب، التمثيل، الخطوات التي يتبعها المعلم
- والمتعلم، ومجموعة من الأسئلة التقليمية لتقديم الطلاب.

عرض الدليل بعد اعداده على مجموعة من السادة المحكمين: لتحقيق من توافق
- الخطوات المذكورة مع مراحل دمج الواقع المعزز في نموذج التعليم التوليدي، والحكم
- على مدى الدقة العلمية للمعلومات الواردة به، ويوضح ملحق (5) دليل المعلم في
- صورته النهائية.

3- تطبيق تجربة البحث ومعالجة النتائج إحصائياً وتفسيراً:
- قامت الباحثة بتدرّيس عضيات الخلية والانسجة النباتية والحيوانية لمجموعة البحث
- باستخدام تقنية الواقع المعزز المدمج مع نموذج التعليم التوليدي من خلال التعرف على أفكار
- المتعلمين الموجودة في بنيتهم المعرفية وتصنيفها، وذلك من خلال إثارة مجموعة من الأسئلة
- حول المفهوم موضوع الدراسة حتى تتضح التصورات الموجودة في بنية المتعلمين المعرفية
- وذلك في المرحلة التمهيدية، ثم توجيه الطلاب للعمل في مجموعات للتعبير عن تصوراتهم
- من خلال تطبيق الواقع المعزز وإخضاع أفكارهم الخاصة للمناقشة من خلال المفاوضة
- والحوار بين أفراد كل مجموعة وذلك في مرحلة التركيز، ثم إعطاء الفرصة للطلاب لتغيير
- وجهات نظرهم، وإثارة التحدي بين ما كان يعرفونه في مرحلة التمهيد، وما عرفوه أثناء التعلم
- وذلك في مرحلة التحدي، وأخيراً تطبيق المفهوم أي استخدام المفهوم في مواقف جديدة وذلك
- في مرحلة التطبيق.

التطبيق البعدى لاختبار التصورات البديلة.
نتائج البحث:

التحليل الكيفي:

اتباع البحث الحالي الطريقة المختلطة وهي الدمج بين التحليل الكمي والتحليل الكيفي

نتائج البحث:

النتائج الكيفية لاختبار التصورات البديلة

للتوصول إلى نتائج كمية للاختبار تم تحليل استجابات الطلاب وتحديد النسبة المئوية من طلاب مجموعة البحث الذين لديهم تصورات بديلة في التطبيق القبلي وكذلك في التطبيق البعدي.

تحليل بعض التصورات البديلة:

التصور البديل: الجدار الخلوى غشاء رقيق يقوم بمنع انتشار البروتوبلازم خارج الخلية.

بتحليل استجابات الطلاب أوضح أن:

في التطبيق القبلي: يوجد 10% من الطلاب لديهم تصور خاطئ عن الغشاء البلازمي حيث لم يستطيعوا تحديده بأنه غشاء رقيق يقوم بمنع انتشار البروتوبلازم خارج الخلية.

في التطبيق البعدي: تم تصويب التصور البديل لدى عينة البحث ولم يكن هناك طلاب لديهم هذا التصور.

التصور البديل: وظيفة الغشاء البلازمي يوفر الحماية والدعم للخلية.

بتحليل استجابات الطلاب أوضح أن:

في التطبيق القبلي: 84% من الطلاب لديهم تصور خاطئ عن وظيفة الغشاء البلازمي ولم يستطيعوا تحديده وظيفته بوضوح ووظيفة بخير المحما والدعم للخلية. أما وظيفة الغشاء البلازمي أنه يغلف الخلية ويفصل بين محتربيها والوسط المحيط بها.

في التطبيق البعدي: يوجد طالبتي لديهما تصور خاطئ عن وظيفة الغشاء البلازمي.
التصور البديل: عن تركيب غشاء الخلية من بروتينات ومشتقات الفوسفوليبيدات.

بتحليل استجابات الطلاب: انصح أن:

في التطبيق القلبي: 39% من الطلاب لديهم تصور خاطئ عن تركيب غشاء الخلية. حيث كتبوا أن تركيبه سائل لأنه يشبه سطح الرسم على سطح الماء.

في التطبيق البدني: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طالب لديهم هذا التصور.

التصور البديل: يركز على تركيب غشاء الخلية من بروتينات وهي مادة سائلة.

بتحليل استجابات الطلاب: اقترح أن:

في التطبيق القلبي: 33% من الطالب لديهم تصور خاطئ عن المواد التي يتكون منها غشاء الخلية حيث كتبوا أن البروتينات المكونة لغشاء الخلية مادة سائلة.

التصور الصحيح هو أن الفوسفوليبيدات المكونة له مادة سائلة.

في التطبيق البدني: طالبة واحدة لديها هذا التصور.

التصور البديل: النووية هي أوضح عضيات الخلية تحت المجهر ويتم فصل محتوياتها عن السيتوبلازم.

بتحليل استجابات الطلاب: اقترح أن:

في التطبيق القلبي: 30% من الطلاب لديهم تصور خاطئ وهو أن النووية هي أوضح عضيات الخلية تحت المجهر ويتم فصل محتوياتها عن السيتوبلازم والسبب أنها تقع
في أحد أطراف الخلية، بينما التصور الصحيح هو أن النواة هي أوضح عضيات الخلية تحت المجهر ويتم فصل محتوياتها عن السيتوبلازم بسبب وجود غشاء مزدوج هو الغشاء الدوائي.

في التطبيق البعدى: تم تصويب التصور البديل لدى عينة البحث، ولم يكن هناك طالبات لديهم هذا التصور.

- التصور البديل: السيتوبلازم يكسب الخليلة دعامة تساعد في الحفاظ على شكل الخلية وقروماها لأنه يحتوى على الماء والمواد العضوية، بينما التصور الصحيح هو أن السيتوبلازم يكسب الخلية دعامة تساعد في الحفاظ على شكل الخلية وقروماها لأنه يحتوى على كميات من الخيوط والأنسجة الصلبة.

في التطبيق البعدى: يوجد 4 طالبات لديهم هذا التصور الخاطئ.

- التصور البديل: الجسم المركزى يوجد في خلايا الطعام.

• بتحليل استجابات الطلاب اتضح أن:

في التطبيق البكلى: 51% من الطلاب لديهم تصور خاطئ وهو أن السيتوبلازم يكسب الخلية دعامة تساعد على الحفاظ على شكل الخلية وقروماها لأنه يحتوى على الماء والمواد العضوية، بينما التصور الصحيح هو أن السيتوبلازم يكسب الخلية دعامة تساعد في الحفاظ على شكل الخلية وقروماها لأنه يحتوى على كميات من الخيوط والأنسجة الصلبة.

في التطبيق البعدى: يوجد 4 طالبات لديهم هذا التصور الخاطئ.

- التصور البديل: يظهر الكروموسوم أثناء الانقسام الخلوى مكون من خيوط متصلة.

• بتحليل استجابات الطلاب اتضح أن:

في التطبيق البكلى: 45% من الطلاب لديهم تصور خاطئ وهو أن الجسم المركزى يوجد في خلايا الطعام، بينما التصور الصحيح هو أن الجسم المركزى غير موجود في خلايا النباتات والطحالب لأنه يوجد بدل من السنتروسوم منطقة من السيتوبلازم تؤدي وظيفته.

في التطبيق البعدى: يوجد 3 طالبات لديهم هذا التصور الخاطئ.

- التصور البديل: يظهر الكروموسوم أثناء الانقسام الخلوى مكون من خيوط متصلة.
التصور البديل: يتحول الكروماتيد أثناء إقسام الخلية إلى تراكيب عصوية الشكل.

• بتحليل استجابات الطلاب أضح أن:

في التطبيق القياسي: 51% من الطلاب لديهم تصور خاطئ وهو يتحول الكروماتيد أثناء إقسام الخلية إلى تراكيب عصوية الشكل لأن الكروماتيد الذي يتحول أثناء إقسام الخلية إلى تراكيب عصوية الشكل يسمى الكروموسومات والكروموسوم يتكون من خيطين متصلين معًا كل خيط يسمى كروماتيد.

في التطبيق البعدي: يوجد 3 طالبات لديها هذا التصور الخاطئ.

التصور البديل: البلاستيدات الخضراء تحول الطاقة الكيميائية إلى طاقة ضوئية.

• بتحليل استجابات الطلاب أضح أن:

في التطبيق القياسي: 24% من الطلاب لديهم تصور خاطئ وهو أن البلاستيدات الخضراء تحول الطاقة الكيميائية إلى طاقة ضوئية، بينما يعتقد أن البلاستيدات الخضراء تحتوي على صبغ الكلوروفل الأخضر الذي يقوم بتحويل الطاقة الضوئية إلى طاقة كيميائية.

في التطبيق البعدي: تم تصويب التصور البديل لدى عينة البحث، ولم يكن هناك طالبات لديهم هذا التصور.

التصور البديل: تتخلل الشبكة الإندوبلازمية السائل النووي وتتصل بغشاء الخلية.

• بتحليل استجابات الطلاب أضح أن:

في التطبيق القياسي: 70% من الطلاب لم يستطيعوا تحديد السبب في أن الشبكة الإندوبلازمية تكون نظام نقل داخل لنقل المواد من جزء آخر داخل الخلية، حيث ذكر 21% منهم أن الشبكة الإندوبلازمية يوجد على أسطحها عدد كبير من البروتينات، بينما ذكر 29% الآخرين أن الشبكة الإندوبلازمية تتألف من السائل النووي وتتصل بغشاء الخلية، بينما يعتقد أنıyor الشبكة الإندوبلازمية تتخلل بها جميع أجزاء السيتوبلازم وتتصل بغشاء الخلية.

في التطبيق البعدي: يوجد 4 طالبات لديهم هذا التصور الخاطئ.

التصور البديل: تختص الشبكة الإندوبلازمية الخشنة بتخليق الليبيدات في الخلية.

• بتحليل استجابات الطلاب أضح أن:

في التطبيق القياسي: 32% من الطلاب لديهم تصور خاطئ عن وظيفة الشبكة الإندوبلازمية الخشنة، حيث ذكر أنها تختص بتخليق الليبيدات في الخلية، بينما يعتقد أن تختص بتخليق البروتينات في الخلية.

في التطبيق البعدي: تم تصويب التصور البديل لدى عينة البحث، ولم يكن هناك طالبات لديهم هذا التصور.
التصور البديل: تستخدم الخلايا البروتين في تخزين الطاقة

- في التطبيق القياسي: 40٪ من الطلاب لديهم تصور خاطئ حيث إن استخدام البروتين في الخلية حيث استطاعوا تحديد أن البروتوزومات هي عضلات مستمرة موجودة في الخلية تقوم بتصنيع البروتين في الخلية، بينما يستخدم الخلايا البروتين في النمو.

في التطبيق البعيد: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طلاباً لديهم هذا التصور.

التصور البديل: تقوم البيوتوكيندريا بتخزين الماء والمواد الغذائية

- في التطبيق القياسي: 36٪ من الطلاب لديهم تصور خاطئ عن البيوتوكيندريا حيث حددوا أنها تعتبر مستودع للمواد اللازمة لتخزين الطاقة الناتجة من التنفس، بينما لم يستطيعوا تحديد سبب ذلك وهو أن البيوتوكيندريا يحدث بها أكسدة للمواد الغذائية.

في التطبيق البعيد: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طلاباً لديهم هذا التصور.

الجسم المركزي هو العضو المسؤل عن تكوين الليبيدوزمات

- في التطبيق القياسي: 32٪ من الطلاب لديهم تصور خاطئ أن الجسم المركزي هو العضو المسؤول عن تكوين الليبيدوزمات، بينما جسد جوليغي العضو المسؤول عن تكوين الليبيدوزمات.

في التطبيق البعيد: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طلاباً لديهم هذا التصور.

التصور البديل: يقوم النسيج البارتشيمي بتخزين الطاقة لأن يوجد به البيوتوكيندريا

- في التطبيق القياسي: 48٪ من الطلاب لديهم تصور خاطئ عن وظيفة النسيج البارتشيمي حيث ذكروا أن النسيج البارتشيمي بتخزين الطاقة لأن يوجد به...
الميتوكوندريا، بينما التصور الصحيح هو أن النسيج البرانشيفي يقوم بعملية البناء الصدوي لوجود البلاستيدات الخضراء.

في التطبيق البعدي: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طالبات لديهم هذا التصور.

التصور البديل: يكون نسيج الخشب من الأنبات الغريبية لأن الأنبات الغريبية تنشأ من خلايا متراصة فوق بعضها.

بتحليل استجابات الطلاب انتضح أن:

في التطبيق القبلي: 33% من الطلاب لديهم تصور خاطئ عن وظيفة النسيج الإسکراتشيمي، حيث ذكروا أن النسيج الكولنشيسي يقوم بدعم وتقوية النبات وإكسابه الصلاحية لأنه يحتوي على مادة السيلولوز، بينما النسيج الإسکراتشيمي يقوم بدعم وتقوية النبات وإكسابه الصلاحية لأنه يحتوي على مادة السيلولوز واللIGN. في التطبيق البعدي: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طالبات لديهم هذا التصور.

التصور البديل: يقوم الخشب بنقل المواد الغذائية الناتجة من عملية البناء الضوئي من الأوراق إلى باقي الأجزاء.

بتحليل استجابات الطلاب انتضح أن:

في التطبيق القبلي: 24% من الطلاب لديهم تصور خاطئ عن وظيفة النسيج الإسکراتشيمي، حيث حددوا أن النسيج الكولنشيسي يقوم بدعم وتقوية النبات وإكسابه الصلاحية لأنه يحتوي على مادة السيلولوز، بينما النسيج الإسکراتشيمي يقوم بدعم وتقوية النبات وإكسابه الصلاحية لأنه يحتوي على مادة السيلولوز واللIGN. في التطبيق البعدي: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طالبات لديهم هذا التصور.
التصور البديل: يعتبر جدار الحويصلات الهوائية في الرئة نسيج حرشفي مصفف يتكون من عدة طبقات من الخلايا الحرشفية.

• تحليل استجابات الطلاب اتضح أن:

في التطبيق القبلي: 51% من الطلاب لديهم تصور خاطئ حيث ذكروا أن جدار الحويصلات الهوائية في الرئة يعتبر نسيج حرشفي مصفف لأنه يتكون من عدة طبقات من الخلايا الحرشفية، بينما جدار الحويصلات الهوائية في الرئة يعتبر نسيج حرشفي بسيط لأنه يتكون من طبقة واحدة من الخلايا المفلحة.

في التطبيق البعدي: يوجد طالبين لم تعرف أن النسيج الحرشفي البسيط يتكون من طبقة واحدة من الخلايا المفلحة.

التصور البديل: تقوم العظام والغضاريف بوظيفة تدعيم الجسم لأنها من الأنسجة العضلية.

• تحليل استجابات الطلاب اتضح أن:

في التطبيق القبلي: 18% من الطلاب لديهم تصور خاطئ حيث حددوا أن العظام والغضاريف تقوم بوظيفة تدعيم الجسم لأنها من الأنسجة العضلية، بينما التصور الصحيح هو أن العظام والغضاريف تقوم بوظيفة تدعيم الجسم لأنها من الأنسجة العضلية الهيكلية.

في التطبيق البعدي: تم تصوير التصور البديل لدى عينة البحث، ولم يكن هناك طالب واحد هذا التصور.

التصور البديل: تقوم المثانة البولية بتخزين موقت للبول لأنها يوجد بها الأنسجة العصبية التي لها القدرة على الانقباض والإنساط.

• تحليل استجابات الطلاب اتضح أن:

في التطبيق القبلي: 21% من الطلاب لديهم تصور خاطئ عن الأنسجة التي توجد بالمثانة البولية حيث حددوا أنها يوجد بها الأنسجة العصبية التي لها القدرة على الانقباض والإنساط، بينما يوجد بها العضلات الملساء التي تتكون من ألياف عضلية لا إرادة.

في التطبيق البعدي: يوجد طالب واحد لديهم هذا التصور.
التصور البديل: خلايا الأنسجة الضامة الوعائية مغمورة في مادة بينينة شبة صلبة.

- بتحليل استجابات الطلاب اتضح أن:
 - في التطبيق القياسي: 72% من الطلاب لديهم تصور بديل عن الأنسجة الضامة الوعائية حيث ذكروا أن خلاياها مغمورة في مادة بينينة شبة صلبة، بينما أن خلاياها مغمورة في مادة بين خلوية سائلة.
 - في التطبيق البعيد: تم تصويب التصور البديل لدى عينة البحث، ولا يوجد طالب لديهم هذا التصور.

يوضح من النتائج الكمية لإختبار التصورات البديلة صحة الفرض الأول من فروع البحث الذي ينص على أنه توجد تصورات بديلة مرتبطة بعلم الخلايا لدى طلاب الصف الأول الثانوي، حيث تتراوح نسبة التصورات البديلة لدى الطلاب بين (21%) - (70%).

التصورات البديلة

التزامن مع حلقة الفرض الثاني: يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القياسي والتطبيق البعيد لطلاب المجموعة التجريبية في التصورات البديلة عن عضيات الخلية ووظائفها في اختبار التصورات البديلة عن الخلية لصالح التطبيق البعيد.

والجدول التالي يوضح نتائج اختبار صحة الفرض الثاني:

جدول (5) دالة الفرق بين متوسطي درجات التطبيق القياسي والتطبيق البعيد لطلاب المجموعة التجريبية في التصورات البديلة عن عضيات الخلية ووظائفها في اختبار التصورات البديلة عن الخلية

<table>
<thead>
<tr>
<th>قيمة α</th>
<th>درجات الحرية</th>
<th>cognition</th>
<th>قيمة</th>
<th>الإحراز</th>
<th>المتوسط</th>
<th>التصورات البديلة</th>
<th>البيانات</th>
</tr>
</thead>
<tbody>
<tr>
<td>.06</td>
<td>.07</td>
<td>.08</td>
<td>.09</td>
<td>.1</td>
<td>.12</td>
<td>.13</td>
<td>.14</td>
</tr>
<tr>
<td>.02</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td>.06</td>
<td>.07</td>
<td>.08</td>
<td>.09</td>
</tr>
<tr>
<td>.01</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td>.06</td>
<td>.07</td>
<td>.08</td>
</tr>
<tr>
<td>.005</td>
<td>.01</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td>.06</td>
<td>.07</td>
</tr>
<tr>
<td>.001</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td>.06</td>
<td>.07</td>
<td>.08</td>
</tr>
</tbody>
</table>

- يوجد فرق ذي دالة إحصائية عند مستوى دالة ≤ 0.01 بين متوسطي درجات التطبيق القياسي والتطبيق البعيد لإختبار التصورات البديلة في الخلية في مجال عضيات الخلية.
وجدو صحة الفرض الثالث: يوجد فرق دلالة إحصائية بين متوسط درجات التطبيق القياسي والتطبيق البعدى لطلاب المجموعة التجريبية في التصورات البديلة عن الأنسجة النباتية في اختبار التصورات البديلة عن الخلية. والجدول التالي يوضح نتائج اختبار صحة الفرض الثالث:

جدول (3) دلالة الفرق بين متوسطي درجات التطبيق القياسي والتطبيق البعدى لطلاب المجموعة التجريبية في التصورات البديلة عن الأنسجة النباتية في اختبار التصورات البديلة عن الخلية

<table>
<thead>
<tr>
<th>قيمة مربع إيتا</th>
<th>قيم درجات الحرية</th>
<th>α</th>
<th>Sig</th>
<th>قيم الإحراز</th>
<th>عدد</th>
<th>المتوسط المعياري</th>
<th>التطور</th>
<th>التصورات البديلة عن الخلية</th>
<th>مجالات التصورات البديلة</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>2.000</td>
<td>0.05</td>
<td>0.000</td>
<td>15.660</td>
<td>3.6848</td>
<td>0.6301</td>
<td>الفعلي</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>0.05</td>
<td>0.000</td>
<td>15.660</td>
<td>3.6848</td>
<td>0.6301</td>
<td>القلبي</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>0.05</td>
<td>0.000</td>
<td>15.660</td>
<td>3.6848</td>
<td>0.6301</td>
<td>البعدى</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• يوجد فرق دلالة إحصائية عند مستوى دلالة 0.01 بين متوسطي درجات التطبيق القياسي والتطبيق البعدى لاختيار التصورات البديلة عن الخلية في مجال (الأنسجة النباتية ووظائفها) في التصورات البديلة عن الخلية في مجال (الأنسجة النباتية ووظائفها) لاختيار التصورات البديلة في
الخلايا مما يدل على علاج التصورات البديلة نتيجة دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي.

تُشير قيمة مربع إيتا إلى أن حجم التأثير يشير إلى وجود تأثير مرتقبة للمعالجة التجريبية المستخدمة (دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي) على درجة التصورات البديلة في مجال (الأنسجة النباتية ووظائفها) لاختيار التصورات البديلة في الخلايا، كما أن (71%) من التباين الكلي للمتغير التابع يرجع إلى المتغير المستقل مما يشير إلى وجود تأثير كبير للمعالجات التجريبية المستخدمة في تصميم التصورات البديلة في الخلايا في مجال (الأنسجة النباتية ووظائفها).

للتأكد من صحة الفرض الرابع: يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القبلي والتطبيق البعدي لطلاب المجموعة التجريبية في التصورات البديلة عن الأنسجة الحيوانية في اختبار التصورات البديلة عن الخلايا لصالح التطبيق البعدي.

والجدول التالي يوضح نتائج اختبار صحة الفرض الرابع:

جدول (7) دالة الفرق بين متوسطي درجات التطبيق القبلي والتطبيق البعدي لطلاب المجموعة التجريبية في التصورات البديلة عن الأنسجة الحيوانية في اختبار التصورات البديلة عن الخلايا

<table>
<thead>
<tr>
<th>البيانات</th>
<th>موطن</th>
<th>متوسط</th>
<th>الإحرازات المعيارية</th>
<th>العدد</th>
<th>α Sig</th>
<th>درجات الحرية</th>
<th>قيم α مربع إيتا</th>
</tr>
</thead>
<tbody>
<tr>
<td>التصورات البديلة عن الخلايا</td>
<td>القبلي</td>
<td>10.242</td>
<td>3.893</td>
<td>333</td>
<td>0.006</td>
<td>6.145</td>
<td>333</td>
</tr>
<tr>
<td>الأنسجة الحيوانية</td>
<td>البعدي</td>
<td>14.857</td>
<td>3.834</td>
<td>333</td>
<td>0.006</td>
<td>6.145</td>
<td>333</td>
</tr>
</tbody>
</table>

• يوجد فرق ذي دالة إحصائية عند مستوى دالة ≥ 0.1 بين متوسطي درجات التطبيق القبلي والتطبيق البعدي لاختيار التصورات البديلة في الخلايا في مجال (الأنسجة الحيوانية ووظائفها) لصالح التطبيق البعدي، مما يدل على نمو وتحسين واضح في مجال الأنسجة الحيوانية ووظائفها لاختيار التصورات البديلة في الخلايا مما يدل على علاج التصورات البديلة نتيجة دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي.
تظهر قيمة مربع إيتا التي تشير إلى وجود تأثير مرتفع للمعالجة التجريبيّة المستخدمة (بمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي) على درجة التصوّرات البديلة في مجال (الأنشطة الحيوانية ووظائفها) لاختبار التصوّرات البديلة في الخلوية، كما أن (70%) من النتائج الكليّة للمتغير التابع يرجع إلى المتغير المستقل مما يشير إلى وجود تأثير كبير للمعالجة التجريبيّة المستخدمة في تصويب التصوّرات البديلة في الخلوية في مجال (الأنشطة الحيوانية ووظائفها).

لتحقيق صحة الفرض الخامس: يوجد فرق ذي دالة إحصائية بين متوسطي درجات التطبيق القبلي والتطبيق البعدي لطلاب المجموعة التجريبيّة في مجموع مجالات التصوّرات البديلة في اختبار التصوّرات البديلة عن الخلوية لصالح التطبيق البعدي.

والجدول التالي يوضح نتائج اختبار صحة الفرض الخامس:

جدول (8) دالة الفرق بين متوسطي درجات التطبيق القبلي والتطبيق البعدي لطلاب المجموعة التجريبيّة في مجموع مجالات التصوّرات البديلة في اختبار التصوّرات البديلة عن الخلوية

<table>
<thead>
<tr>
<th>البيان</th>
<th>المجالات التصوّرات البديلة</th>
<th>التقييم (صيغة)</th>
<th>α Sig</th>
<th>قيمتي (مربع إيتا)</th>
<th>قيمتي (الإحراق)</th>
<th>قيمتي (الإحراق)</th>
<th>قيمتي (الإحراق)</th>
<th>قيمتي (الإحراق)</th>
</tr>
</thead>
<tbody>
<tr>
<td>التصوّرات البديلة عن الخلوية (الدرجة الكلية)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>القبلي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>البعدي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

يوضح من الجدول السابق أنه:

• يوجد فرق ذي دالة إحصائية عند مستوى دالة ≥ 0.1 بين متوسطي درجات التطبيق القبلي والتطبيق البعدي لاختبار التصوّرات البديلة في الخلوية في مجالات التصوّرات البديلة في (عُضوات الخلوية ووظائفها، الأنشطة البيئية، الأنشطة الحيوانية) لصالح التطبيق البعدي، مما يدل على نمو وتحسين واضح في الدرجة الكلية لاختبار التصوّرات البديلة في الخلوية مما يدل على علاج التصوّرات البديلة نتيجة دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي.
تشير قيمة مربع إيتا إلى أن حجم التأثير يشير إلى وجود درجة تأثير مرتبطة للمعالجة التجريبيّة المستخدمة (دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليد) على الدرجة الكلية لاختيار التصورات البديلة في الخلية كما أن (89%) من التباين الكلي للمتغير التابع يرجع إلى المتغير المستقل مما يشير إلى وجود تأثير كبير للمعالجة التجريبيّة المستخدمة في تصويب التصورات البديلة في الخلية.
وبذلك تم قبول جميع فرضيات البحث.

مناقشة وتفسير النتائج:

أشهدت نتائج البحث إلى فاعلية دمج تكنولوجيا الواقع المعزز في نموذج التعلم التوليدي لتصويب التصورات البديلة المرتبطة بعلم الخلية لدى طلاب الصف الأول الثانوي، وقد يرجع ذلك إلى الأسباب الآتي:

1. استخدام تكنولوجيا الواقع المعزز يودى إلى إثراء بيئة التعلم بميزات رقمية مختلفة (الفيديوهات - الرسوم المتحركة - الصور ثلاثية الأبعاد - المقاطع الصوتية) والتي بدورها تساعد في تحويل المعلومات والمنافع المجردة إلى معلومات وفاعلية ملموسة.

3. دمج تقنية الواقع المعزز في بيئة الصف تعمل على تعزيز فهم الطلاب لتركيب ووظيفة الخلايا الحيوانية والنباتية، ويفيد هذا مع دراسة وينج وينج و يو و يو، وهسيا Rahmi ودراسة رحمي وووبيا و كهارودين (Bee; Yew and Hsia, 2016, 9,

5. تزود الطلاب بالأمثلة والمعلومات المتعلقة بالعضايا والأنسجة ووظائفها، مما يدعم تكوين صورة متكاملة عنها وعلاج التصور البديل فيها.

6. تقديم المعلومات والمعارف بأشكال جديدة مختلفة تغير التصورات البديلة الموجودة لدى الطلاب.

7. استخدام التعلم التوليدي أدى إلى تحقيق التعلم ذي المعنى ووصول الطلاب للمعلومات نتيجة توجيه جميع الأنشطة التي ينفذها الطلاب نحو بناء المعرفة من خلال الاكتشاف، Prawita , Prayitno and Sugiyarto , 2019(2021).
يتيح نموذج التعلم التوديدي تحديد الأفكار الموجودة لدى الطلاب في بنيةهم المعرفية، حيث يساعد الطلاب على الربط بين المفاهيم والأفكار الموجودة لديهم وبين ما توصلوا إليه مما يساعد في إنتاج المفاهيم لديهم، ويتقق هذا مع دراسة (فنونة، 2012).

مرور الطلاب بمرحلة التحدي في نموذج التعلم التوديدي أعطاه الفرصة لإنشاء علاقات بين المعلومات التي يشاهدونها ويسمعونها وبين المعلومات السابقة الموجودة في الذاكرة لديهم، مما يساعدهم على تنظيم المعلومات وتصصيلها أو إعادة تصويرها بشكل صحيح.

منح العمل في مجموعات من خلال نموذج التعلم التوديدي فرصة للطلاب ذوي التصورات البديلة لمناقشة أفكارهم، وساعد الطلاب الآخرين على تفسير التصورات العلمية الصحيحة للطلاب الذين لديهم تصورات بديلة، مما أدى إلى تغيير التصورات البديلة، وهذا يتفق مع دراسة (درويش، 2019).

مرور الطلاب بمرحلة التطبيق في نموذج التعلم التوديدي نصبه على منحهم فرصة لتوسع المفهوم وتطبيقه في مواقع جديدة وأداؤهم في علاج التصورات البديلة لديهم مثل التصورات البديلة عن الأنسجة الحيوانية ووظائفها.

دمج تطبيقات الواقع المعزز في مراحل نماذج التعليم القائمة على النظرية البنانية يؤثر بشكل إيجابي على عملية تعلم الطلاب ويسهم في فهم الموضوعات والمفاهيم الجديدة Kozcu و Guven and Celik (2021).

النوصيكات والمقترحات:

في ضوء ما أُسفرت عنه نتائج البحث الحالي يمكن تقديم النوصيكات الآتية:

- تدريب معلمي الأحياء بالمرحلة الثانوية على استخدام تطبيقات الواقع المعزز في تدريس موضوعات الأحياء المختلفة.
- إعداد التفكير في تخطيط مناهج الأحياء بالمرحلة الثانوية بحيث تركز من خلال محتواها على تعديل التصورات البديلة لدى الطلاب.
- الاهتمام بشخصية التصورات البديلة لدى طلاب المرحلة الثانوية، حتى لو توقف عائداً أمام الطلاب لامكاس المعلومات الجديدة.
- استخدام الواقع المعزز في مراحل التعليم المختلفة.
• الاهتمام بتدريب طلاب كلية التربية شعبة العلوم البيولوجية على تصميم وإعداد بيئة وأنشطة الواقع المعزز.

كما تقترح الباحثة إجراء الدراسات التالية:

• استخدام الواقع المعزز في تنمية التفكير البصري في مادة الأحياء لدى طلاب المرحلة الثانية.

• أثر استخدام الواقع المعزز ونموذج التعليم التوليدى في علاج التصورات البديلة في العلوم لدى تلاميذ المرحلة الإعدادية.

• فاعلية استخدام الواقع المعزز في تنمية مهارات التفكير العليا لدى طلاب كلية التربية شعبة العلوم البيولوجية.

• تأثير أنماط أخرى من التكنولوجيا على علاج التصورات البديلة في الأحياء لدى طلاب المرحلة الثانية.
المراجع

فلسطين.
السيد، سوزان محمد حسن (2013). فاعلية استخدام استراتيجية الخرائط الذهنية غير
الهرمية في تصويب التصورات البديلة لبعض المفاهيم العلمية وتنمية التحصيل وبقاء
اثر التعلم في مادة الأحياء لدى طالبات المرحلة الثانوية بالسعودية. مجلة التربية العلمية.
26(2). 116-111.

السيد، فؤاد البحيري (2014). علم النفس الإحصائي وقياس العقل البشري. القاهرة : دار الفكر
العربي.

القاهرة : مركز الكتب للنشر.

الفكر العربي.

العبدو، زيد سليمان و داود، أحمد عيسى (2014). النظرية البنائية الاجتماعية وتطبيقاتها
في التدريس. دبي – الإمارات العربية المتحدة : مركز ديبونو لتعليم التفكير.

عظام، إبراهيم أحمد إبراهيم (2014). فاعلية نموذج التعلم التوليد في تنمية مهارات
التفكير فوق المعرفي والتحصيل لدى طلاب المرحلة الثانوية في مادة الأحياء. رسالة
ماجستير غير منشورة. كلية التربية : جامعة المنصورة.

عفيي، محرم يحيى محمد محمد (2016). فاعلية استراتيجية DARE (المقترحة القائمة)
على الرسوم واستخدام النماذج البصرية في تصويب التصورات الخاطئة المرتبطة
بالدوجما الرئيسية للبيولوجيا الجزيئية وتنمية مهارات التفكير البصري لدى طلاب
المرحلة الثانوية. مجلة التربية العلمية. 31(8). 131-141.

فونه، زاهر نمر محمد (2012). أثر استخدام نموذج التعلم التوليد والنصف الذهني في
تنمية المفاهيم والاتجاه نحو الأحياء لدى طلاب الصف الحادي عشر بمحافظات غزة.
رسالة ماجستير غير منشورة. كلية التربية : الجامعة الإسلامية – غزة.

محمد، أحمد عمر أحمد (200). نموذج تدريبي مقترح في الأحياء يوظف الواقع المعزز
في ضوء مبادئ نظرية ماهر المعرفية وفاعليته في تنمية مهارات التفكير البصري
والميل نحو الأحياء لدى طلاب المرحلة الثانوية. مجلة كلية التربية في العلوم التربوية :
جامعة عين شمس. 44(3). 376-377.

